
XGTagger, an open-source interface dealing with XML contents.

Xavier Tannier, Jean-Jacques Girardot and Mihaela Mathieu
Ecole Nationale Supérieure des Mines

158, cours Fauriel
42023 Saint-Etienne FRANCE

tannier, girardot, mathieu@emse.fr

Abstract

This article presents an open-source interface dealing
with XML contents and simplifying their analysis. This
tool, called XGTagger, allows to use any existing system de-
veloped for text only, for any purpose. It takes an XML
document in input and creates a new one, adding informa-
tion brought by the system. We also present the concept of
“reading contexts” and show how our tool deals with them.

1. Introduction

XGTagger1 is a generic interface dealing with text con-
tained by XML documents. It does not perform any analysis
by itself, but uses any system S that analyse textual data. It
provides S with a text only input. This input is composed of
the textual content of the document, taking reading contexts
into account.

A reading context is a part of text, syntactically and se-
mantically self-sufficient, that a person can read in a go,
without any interruption [3]. Document-centric XML con-
tents does not necessary reproduce reading contexts in a lin-
ear way.

Within this context, we can distinguish three kinds of
tags [1]:

• Soft tags identify significant parts of a text (mostly em-
phasis tags, like bold or italic text) but are transparent
when reading the text (they do not interrupt the reading
context);

• Jump tags are used to represent particular elements
(margin notes, glosses, etc.). They are detached from
the surrounding text and create a new reading context
inserted into the existing one.

1http://www.emse.fr/∼tannier/en/xgtagger.html

• Finally hard tags are structural tags, they break the lin-
earity of the text (chapters, paragraphs. . .).

2. General principle

Figure 1 depicts the general functioning scheme of XG-
Tagger. Input XML document is processed and a text is
given to the user’s system S. After execution of S, a post-
processing is performed in order to build a new XML doc-
ument.

2.1. Input

As shown by figure 1, if a list of soft and jump tags is
given by the user, XGTagger recovers the reading contexts,
gathers them (separated by dots) and gives the text T to the
system S. In the following example sc (small capitals) and
bold are soft tags, since footnote is a jump tag.

(1) <article>

<title>Visit I<sc>stanbul</sc> and
M<sc>armara</sc> region</title>
<par>

This former capital of three
empires<footnote>Istanbul has suc-
cessively been the capital of Roman, Byzan-
tine and Ottoman empires</footnote>
is now the economic capital of
<bold>Turkey</bold>

</par>

</article>

Considering soft, jump and hard tags allows XGTagger
to recognize terms “Istanbul” and “Marmara”, but to distin-
guish “empires” and “Istanbul” (not separated by a blank
character). The text infered is:

Initial XML
Document

Document parsing,
reading context

recovery

System S
(black box)

Initial document
reconstruction and

updating

User’s
parameters

Special tag lists

Final XML
Document

onlytext

onlytext

stylesheet

Figure 1. XGTagger general fonctioning
scheme.

Visit Istanbul and Marmara region . This
former capital of three empires is now the
economic capital of Turkey . Istanbul has
successively been the capital of Roman,
Byzantine and Ottoman empires

It is not necessary to take care of soft and jump tags if
the document or the application do not impose it. If nothing
is specified, all tags are considered as hard (in this exam-
ple, “I” and “stanbul” would have been separated, as well
as “M” and “armara” and the footnote would have stayed in
the middle of the paragraph). Nevertheless, in applications
like natural language processing or indexing, this classifica-
tion can be very useful.

2.2. Output

This output of the system S must contain (among any
other information) the repetition of the input text. If we

take the example of POS tagging2, with TreeTagger [2]
standing for the system S, the first field of the output is the
initial text. Considering our example, words are separated:

Visit VV visit
Istanbul NP Istanbul
and CC and
Marmara NP Marmara
Region NN region
. SENT .
.

The user describes S output with parameters3, allowing
XGTagger to compose back the initial XML structure and to
represent additional information generated by S with XML
attributes. In our running example, parameters should spec-
ify that fields are separated by tabulations, that the first field
represents the initial word, the second field stands for the
part-of-speech (pos) and the third one is the lemma (lem).
XGTagger treats these parameters and S output and returns
the following final XML document:
<article>

<title>

<w id=”1” pos=”VV” lem=”visit”>Visit</w>

<w id=”2” pos=”NP” lem=”Istanbul”>I</w>

<sc>

<w id=”2” pos=”NP” lem=”Istanbul”>

stanbul</w>

</sc>
<w id=”3” pos=”CC” lem=”and”>and</w>

<w id=”4” pos=”NP” lem=”Marmara”>M</w>

<sc>

<w id=”4” pos=”NP” lem=”Marmara”>

armara</w>

</sc>
<w id=”5” pos=”NN” lem=”region”>region</w>

</title>
<par>

<w id=”7” pos=”DT” lem=”this”>This</w>

<w id=”8” pos=”JJ” lem=”former”>former</w>

<w id=”9” pos=”NN” lem=”capital”>capital</w>

<w id=”10” pos=”IN” lem=”of”>of</w>

<w id=”11” pos=”CD” lem=”three”>three</w>

<w id=”12” pos=”NNS” lem=”empire”>empires</w>

<footnote>

<w id=”21” pos=”NP” lem=”Istanbul”>

Istanbul</w>

<w id=”22” pos=”VHZ” lem=”have”>has</w>

<w id=”23” pos=”RB”
lem=”successively”>successively</w>

. . .
<w id=”32” pos=”NP” lem=”Ottoman”>

Ottoman</w>

<w id=”33” pos=”NNS” lem=”empire”>

empires</w>

2A part-of-speech (POS), or word class, is the role played by a word in
the sentence (e.g.: noun, verb, adjective. . .). POS tagging is the process of
marking up words in a text with their corresponding roles.

3These parameters can be specified either through a configuration file
or Unix or DOS-like options (the program is written is Java).

</footnote>
<w id=”13” pos=”VBZ” lem=”be”>is</w>

<w id=”14” pos=”RB” lem=”now”>now</w>

<w id=”15” pos=”DT” lem=”the”>the</w>

<w id=”16” pos=”JJ” lem=”economi”>economic</w>

<w id=”17” pos=”NN” lem=”capital”>capital</w>

<w id=”18” pos=”IN” lem=”of”>of</w>

<bold>

<w id=”19” pos=”NP” lem=”Turkey”>

Turkey</w>

</bold>

</par>

</article>
Note that the identifier id allows to keep the reading

contexts (see ids 2 and 4, 12 and 13) without any loss of
structural information. The initial XML document can be
converted back with a simple stylesheet (except for blank
characters that S could have added).

More details about XGTagger use and functioning can
be found in [4] and in the user manual [5].

3. Examples of uses

The first example was part-of-speech tagging, but any
kind of treatments can be performed by system S.

N.B.: Recall that an important constraint of XGTagger is
that at least one field of the user system output must contain
the initial text (blank characters excepted).

3.1. POS tagging upgrading: locution handling

If the system S is able to detect locutions, XGTagger
can deal with that feature, with a special option (called
special separator). With this option the user can
specify that a sequence of characters represents a separation
between words.

• Let’s take the following XML element:
<sentence>I did it in order to clarify
matters</sentence>

• XGTagger will input the following text into the sys-
tem:
I did it in order to clarify matters

• With the special separator ’///’, S can return:
I PP
did VVD
it PP
in///order///to LOC
clarify VV
matters NNS

• With appropriate options, XGTagger final output is:
<sentence>

<w id=”1” pos=”PP” t=”I”>I</w>

<w id=”2” pos=”VVD” t=”do”>did</w>

<w id=”3” pos=”PP” t=”it”>it</w>

<w id=”4” pos=”LOC” t=”in///order///to”>

in</w>

<w id=”4” pos=”LOC” t=”in///order///to”>

order</w>

<w id=”4” pos=”LOC” t=”in///order///to”>

to</w>

<w id=”5” pos=”VV” t=”clarify”>clarify
</w>

<w id=”6” pos=”NNS” t=”matter”>matters
</w>

</sentence>

Note that the three words composing the locution get the
same identifier.

3.2. Syntactic analysis

With the same special separator option, a syn-
tactic analysis can be performed. Suppose that S groups
together noun phrases of the form “NOUN PREPOSITION
NOUN”.

• For the following XML element:
<english_sentence>He has a taste<gloss>Taste:
preference, a strong liking</gloss>
for danger</english_sentence>

• . . . XGTagger will give this text into the system
(considering that ’gloss’ is a jump tag):
He has a taste for danger . Taste:
preference, a strong liking .

• S can perform a simple syntactic analysis and return,
by example:
He has a taste_for_danger/NP .
Taste: preference, a strong liking
.

• With XGTagger options -i -w 1 -2 pos -f
“/” -d “ “ -e “_”, the final output is:
<english_sentence>

<w id=”1”>He</w>

<w id=”2”>has</w>

<w id=”3”>a</w>

<w id=”4” pos=”NP”>taste</w>

<gloss>

<w id=”6”>Taste:</w>

<w id=”7”>preference,</w>

. . .
<w id=”10”>liking</w>

</gloss>
<w id=”4” pos=”NP”>for</w>

<w id=”4” pos=”NP”>danger</w>

</english_sentence>

3.3. Lexical enrichment

The user’s system can also return any information about
words. For example, a translation of each noun:

• XML Input:
<sentence>I had a conversation with my
brother</sentence>

• S output (suggestion):
I
had
a
conversation/entretien/Gespräch
with
my
brother/frère/Bruder

• Options: second field is French, third field is German;
Output:
<sentence>

<w>I</w>

<w>had</w>

<w>a</w>

<w french=”entretien”
german=”Gespräch”>conversation</w>

<w>with</w>

<w>my</w>

<w french=”frère”
german=”Bruder”>brother</w>

</sentence>

3.4. Reading Contexts finding

Finally, S can just repeat the input text (possibly with a
simple separation of punctuation). The result is that words
are enclosed between tags, reading contexts are brought to-
gether (by ids) and cut words are reassembled. This op-
eration can be particularly interesting for traditional infor-
mation retrieval; it can represent a first step before index-
ing XML documents4 or operating researchs taking logical
proximity [3] into account.

• XML Input:
<title>U<sc>nited</sc> S<sc>tates</sc>
E<sc>lections</sc></title>

4An option of XGTagger adds the path of each element as one of its
attribute.

• S output (same as the input):
United States Elections

• Possible final output:
<title>

<w id=”1” rc=”United”>U</w>

<sc>

<w id=”1” rc=”United”>nited</w>

</sc>
<w id=”2” rc=”States”>S</w>

<sc>

<w id=”2” rc=”States”>tates</w>

</sc>
<w id=”3” rc=”Elections”>E</w>

<sc>

<w id=”3” rc=”Elections”>lections
</w>

</sc>

</title>

4. Conclusion

We have presented XGTagger, a simple software system
aimed at simplifying the handling of semi-structured XML
documents.

XGTagger allows any tool developed for text-only docu-
ments, either in the domain of information retrieval, natural
language processing or any document engineering field, to
be applied to XML documents.

References

[1] L. Lini, D. Lombardini, M. Paoli, D. Colazzo, and C. Sartiani.
XTReSy: A Text Retrieval System for XML documents. In
D. Buzzetti, H. Short, and G. Pancalddella, editors, Augment-
ing Comprehension: Digital Tools for the History of Ideas.
Office for Humanities Communication Publications, King’s
College, London, 2001.

[2] H. Schmid. Probabilistic Part-of-Speech Tagging Using De-
cision Trees. In International Conference on New Methods in
Language Processing, Sept. 1994.

[3] X. Tannier. Dealing with XML structure through "Reading
Contexts". Technical Report 2005-400-007, Ecole Nationale
Supérieure des Mines de Saint-Etienne, Apr. 2005.

[4] X. Tannier. XGTagger, a generic interface for analysing XML
content. Technical Report 2005-400-008, Ecole Nationale
Supérieure des Mines de Saint-Etienne, July 2005.

[5] X. Tannier. XGTagger User Manual.
http://www.emse.fr/~tannier/XGTagger/Manual/, June
2005.

