Evaluating Temporal Graphs built from Texts via
Transitive Reduction

Abstract

Temporal information has been the focus of recent attemianformation ex-
traction, leading to some standardization effort, in jpaitr for the task of relating
events in a text. Part of this effort addresses the abiligotopare two annotations
of a given text, while relations between events in a storyiransically interde-
pendent and cannot be evaluated separately. A proper &ealuaeasure is also
crucial in the context of a machine learning approach to tieblpm. Finding a
common comparison referent at the text level is not an olsvemdeavour, and we
argue here in favor of a shift from event-based measures &sunes on a unique
textual object, a minimal underlying temporal graph, or enformally the transi-
tive reduction of the graph of relations between event batied. We support it
by an investigation of its properties on synthetic data and well-know temporal
corpus.

1 Introduction

Temporal processing of texts is a somewhat recent field frane#nodological point
of view, even though temporal semantics has a long traditiating back at least to the
1940's [15]. While theoretical and formal linguistic appohes to temporal interpreta-
tion have been very active in the 1990s, empirical apprcaeee less frequent, and
very few natural language processing systems were evdlbatond a few instances.
Temporal information being essential to the interpretatib a text and thus cru-
cial in applications such as summarization or informatigtraetion, it has received
growing attention in the 2000s [9] and has lead to some stdimddion effort through
the TimeML initiative [17]. We address here a central pathiis task, namely the ex-
traction of the network of temporal relations between eveleiscribed in a text. Since
temporal information is not easily broken down into locakhbif information, there
are many equivalent ways to express the same ordering ofsevidnman annotation
is thus notoriously difficult [19] and comparisons betwean@tations cannot rely on
simple precision/recall-type measures. The given practavadays has been to com-
pute some sort of transitive closure over the network/gafptonstraints on temporal
events (usually expressed in the well-known Allen algeBiadr a sub-algebra), and
then either compare the sets of simple temporal relaticaisate deduced from it, or
measure the agreement between the whole graphs, includipgctions of informa-
tion [23]. This reasoning model is also used to help the Ingaf representations of
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Figure 1: Allen relations. Each relatiorhas an inverse relatian.

temporal situations by imposing global constraints on tbfmcal decision problems
[4,22, 3].

We purpose to take a different route here, by extracting glesireferent graph, a
minimal graphof constraints. There are a number of ways of doing this andngee
for going after the graph of relations between event bouadavVe aim to accomplish
two things by doing so: to find a graph that is easy to compuid,ta eliminate a
bias introduced by measures that do not take into accourimdinatorial aspect of
agreement on transitive closure graphs.

The next section presents in more detail the usual way of epimgp annotation
graphs between temporal entities extracted from a text,thedroblems it raises.
Then we argue for comparing event boundaries instead oftewaed define two new
metrics that apply to that type of information. We focus onvex relations, a tractable
sub-algebra of Allen relations, which covers human aniariat Finally, we present
an empirical study of the behavior of these measures on getkdata and on the
TimeBank Corpus [14] to support our claim of the practigadif this methodology.

2 Comparing temporal constraint networks

Works on temporal annotation of texts strongly rely on Abdnterval algebra. Allen
represents time and events as intervals, and states thaasi@ felations can hold
between these intervals (see Figure 1 and Table 1). Theseyhielations, existing
amongst all intervals of a collection (in our case, of a tedéfine a graph where nodes
are the intervals and where edges are labeled with the setadfons which may hold
between a pair of nodes.

We are interested in this paper in evaluating systems atimgt&xts by temporal
relations holding between events or between temporal exjmes and events. Evalu-
ations are often not performed on graphs of relations betwéleevents in a text, but
on the subproblem of ordering pairs of successively desdrévents [10, 23] or even
same-sentence events8'he main reason of this choice is the difficulty of the task,

1Exceptions exist, as [11] and [12].



| Relation| Meaning | Endpoint relations | Inverse relation]

I < J | befored | I, < J; I >J
ImJ Imeetsd | Ib =.J; ImiJ
lToJ loverlapsd| 1 < 1AL < JoANJL < 1o lToilJ
IsJ Istarts) | [ = 1 A1y < Jo IsiJ
IdJ Iduringd | 1 <1 ANx < Js IdiJ
I1fJ IfinishesJ| J1 <1 ALy = Jy IfiJ
1 =1J lequalsd | I} = J1 NIy = J

Table 1: Allen relations. Each relatiarhas an inverse relatiori. An intervall starts
atl; and ends als.

even for human beings, of assigning temporal relations amgeltext [19]. Another is-
sue is that evaluation of full temporal graphs is still anrogeestion, as will be further
discussed in this section.

We detail now important notions concerning temporal neks@and the comparison
of these networks. All example relations given in this sattre expressed in terms of
Allen algebra, whose set of relations and their abbreviatere recalled in Table 1.

2.1 Temporal Closure

Temporal closure is an inferential closure mechanism asists in composing known
pairs of temporal relations in order to obtain new relatjansto a fixed pointE.g: if
A < BandCdB, thenA < C; the transition can lead to a disjunction of relations,
forexample ifA < BandBdC thenA < CV AoCV AmCVAdCV AsC.

A table of all composition rules in Allen algebra can be foumd2] or [16], and
a sample for a few basic relations is given in Table 2. These medations do not
express new intrinsic constraints, but make the temponahtsbn more explicit. A
constraint propagation algorithm ensures that all exgstimporal relations are added
to the network, labelling an inconsistency with2]. This algorithm is sound, but
not complete, as it does not detect all cases of inconsigtedee the simple version
presented in Algorithm 1. More efficient versions for lardense graphs have also
been developped [25] (and we use one of them), but it is not@im focus here.

Itis not possible to compare temporal graphs without perfog a temporal closure
on them. Indeed, there are several ways to encode the sampertdimformation in a
graph, as shown in Figure 2. Only temporal closure makesaixphat is implicit and
shows that two graphs are identical or different. But terapolosure also produces
redundant information, which can lead to evaluation issasswill be explained in
Section 2.4.

In this paper, we callz* the temporal closure of a grajh

2.2 Time point algebra and convex relations

Interval graphs can be easily converted into graphs betpeiaits [25] (where an event
is split into a beginning and an ending point; the mapping/beh Allen relations and



Figure 2: Three identical annotations. The last one is theltef temporal closure.
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Table 2: Composition between a few Allen relations.

Algorithm 1 Temporal closure
Let U = the disjunction of all 13 Allen relations,
R, » = the current relation between nodesandn
procedure CLOSURHG)
A=G.edges()
N=G.vertices()
changed = True
while changedio
changed = False
for all pairs of nodesi,j) € N x N do
forall k€ N suchtha{(i, k) € AN (k,j) € A) do
Ri;; = (Rikx o Rk j)
if no edge (a relatiorRy; ;) existed before betweenand j then

Rgi,j =U
end if
Riyj = Rli,j n Rgi_’j > intersect
if R;; =0 thenerror > inconsistency detected
else ifR; ; = U then do nothing > no new information
else
update edge (i,j)
changed = True
end if
end for
end for
end while

end procedure




Figure 3: Endpoint graph (same temporal information as fei@).

point relations is given by Table 1). This leads to a smalkgra$ simple relations:
equality (=) and precedence (< and >), and a simpler algebtia,only 7 consistent
vectors (<}, {<,=},{=},{<,=,>}, {>}, {>=}, {<, >} where a set denotes a dis-
junction of relations). The pointalgebra is defined by the felations; tor, between
beginning and end points of the two intervaland.J (11 r1 Jy, Iz 72 J2, I; 73 J2 and
I r4 J1). Converting an Allen graph into an endpoint graph is shigward, see
the correspondance in Table 1. Figure 3 shows a point grapikisdent to the interval
graph of Figure 2.

As with the interval algebra, pairs of point relations carcbmbined and the tem-
poral closure can be computed in the same way. The relatiovebe two time points
is continuousf the assigned set of simple relations is convex [25].

A so-calledconvex relationcorresponds to cases where relationgo r, are as-
signed to one of the 6 possible relatiohs}, {<, =}, {=},{<,=, >}, {>}, {>=}2%
considered asonceptual neighborf$]. Using only these relations between endpoints
restricts interval relations to sets of Allen relationsttage conceptual neighborghat
is they encode relations that may be vague but in which iateendpoints can only be
in convex subsets of the timeline. Figure 4 shows which Atldations are conceptual
neighbors. Another useful way of seeing these conceptugihhbers is by considering
continuous transformations of an interval endpoints ortitheline: when a relation
holds between two intervalg§ andl,, moving continuously their endpoints can only
change the relation to a conceptual neighbar,dbr instance such a conceptual trans-
formation cannot change a situation whéyestarts/, to a situation wherd; < I
without going through (at least) intermediary situatidpgverlapg2 andl; meetsls.

Finally, instead o2'2 possible disjunctive relations in Allen algebra, the setaf
responding interval convex relations is reduced to 82. Treesponding sub-algebra
is tractable, that is the problem of the satisfiability of aafeconstraints has a sound
and complete polynomial time algorithm. Moreover, it willsure the uniqueness of
minimal graphs, as will be defined and described in this paper

See [18] for a more complete presentation within a naturaguage processing

2The 7 relations described above, excggt, >}, noted alsg#. These form a sub-algebra: compositions
of disjunctions of these relations are disjunctions of ¢hesations. Before OR after is not part of this
sub-algebra.
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perspective.

Itis important to note that in a temporal graph built fromttisere are only convex
relations since the graph is generated from a finite set o balations, themselves
mostly (if not always) convex relations, and the set of aliwex relations forms a sub-
algebra. In the corpus we consider, we never met non-coevegaral annotations.

2.3 Strict and relaxed measures

In the general case, both humans and systems may assignatiisiis of atomic rela-
tions between two events¢. A < B vV Am B). This is a way to reduce vagueness
even if the exact relation is not known.

The presence of disjunctions raises the question of howdregelations that are
only partly correct, likeA < B v Am B instead ofA < B or the reverse.

A strict measure only counts exact matching as success, and wikdonge score
0 for the latter example.

But we think that an evaluation measure should take bettenart of “close matches”.
For example, suppose that the gold standard relation batweadB is A < B. If the
system chooses the disjunctidn< B v Am B, it must be rewarded less thah< B
but more tham > B or nothing. The system is vaguer but correct, as its anmootai
a logical consequence of the standard annotation.

We proposed in [13] such a gradual measure that we might teatigoral” preci-
sion and recall. IfS; ; is the (possibly disjunctive) relation betweeand; given by
the system andk; ; the (possibly disjunctive) gold standard, then:

P R Card(Si,j ﬂKi’]‘) R _ Card(Si,j ﬂKi’]‘)
temp i,j — Card(K;,;) temp — Card(S;,;)
With Card(G; ;) = the number of atomic relations present in the disjuncfidrus,
in our example, the systersy that answeredbeforeVv overlapsbetween and; will
get:

Card( (beforev overlapg N before)
Ptemp 4,7,51 — =1

Card(before)

6



Card( (beforev overlapg N before) 1
Card( beforev overlaps) T2
While S, that answeredfter will get Premyp 4,55, = Remp 5,5, = 0.
The final precision (resp. recall) is the average on the nuwirelations given by
the system (resp. by the key):

Riemp ij,50 =

i=n j=n i=n Jj=n
E E Ptemp 1,7 § § Rtemp 1,7
_i=1 j=i41 _i=1 j=i+1
Premp = Card(S) Riemp = Card(K)

Similar measures have also been used during the TempEvah&ea campaign
in 2007 [23] and were calleetlaxedrecall and precision. We will use the worstsict
andrelaxedto designate these two ways to score temporal relations.

2.4 Relative importance of relations

As shown above, temporal closure is necessary in order sotalitompare properly
two temporal graphs. But in a temporal graph, relations dohawe all the same
importance. Applying basic recall and precision scorefhéeistrict or relaxed) on
closed temporal graphs is not enough. Consider the verylsigraph examples of
Figure 5, in which the first grapH is the gold standards; contains only two relations,
against six inK . But it seems unfair to consider a recall scor%ofsince adding only
one relation B < C) would be enough to infer all others. An intuitive recall idbe
arounds.

Even if we suppose that we have a way to distinguish unambiglydmajor”
relations (bold lines i) from “minor” (useless) ones (dotted lines), it would stidit
be enough. Indeed, gragh finds the relation B < D”. This relation is minor ink,
because it can be found by composing other relations; b it is not the case, this
relation actually carries a piece of information and musntbe rewarded. However,
even if the amount of temporal information brought 8y and S5 seem equivalent,
S3 should get a higher score. Indeed, the amoumhisGingrelations (to come to the
full graph) is much lower inSs (only “C' < D” is missing) than inS,. Finally, Sy
should get a better recall than any other one. General cagalsing all relations are
obviously much more complex.

Precision is affected in a similar manner, since errors ojormalations are likely
to be propagated on inferred ones. The same kind of problend dx@ found in the
co-reference task of MUC-6, and was addressed by consglarspanning tree of the
graph of co-reference [24]. Any spanning tree is enough tmée equality networks
since equality is an equivalence relation.

2.5 “Minimal” graphs

As said in previous section, a good, but insufficient way tal déth the relative im-
portance of graph relations would be to work on what we cditedjor” relations, or
“minimal graph”. We consider that a temporal gra@h,;,, is a “minimal graph” of a
graphgG if:
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Figure 5: What a metric should deal with.

1. Its temporal closure leads to the same temporal infoonatsG.

2. No relation can be removed from this graph without bregkiire first property.

Unfortunately, a unique minimal graph does not exist in teaegal case, and in
particular for Allen relations. [16] proposes a way to findlrainimal graphs for a
given temporal graph. Their algorithm first finds tt@re relations by intersecting all
derivations and then computes all possible remaining coatigins in order to find
those composing a minimal graph.

For example, for the relatioR 4, 5 betweend andB, derivations ar? 4 c o R¢ B,
Ra.poRp.p, RagoREg g, etc. If the intersection of all these derived relationsadsu
R4 B, it means thak 4 p is not acorerelation, since it can be obtained by composing
some other relations. Otherwise, the relationdsgerelation, since removing it always
leads to a loss of information. This operation is computetlly feasible. The way this
kernel is obtained ensures its uniqueness.

The second part of the procedure (compute remaining conidits is computa-
tionally impractical for even medium-sized graphs, andathors do not detail much
their empirical investigations.

Turning back to the evaluation, [21] suggests the comparifographs through
corerelations, which are easy to compute and give a good ideawfitnportant the
relations are in a same graph. But core relations do not ooaththe information
provided by closed graphs, and measures on core graphslgr@nocagpproximation of
what should be assessed. In this paper, we propose a matbbthin a unique graph
respecting the two constraints above.
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Figure 6: Endpoint graph with merges (same temporal inftionas Figure 3). Gray
dashed arcs are trivial relations.

3 Proposed new metric

When confronting a graph to a gold standard, a similaritysneais necessary. Many
similarity measures exist between two graphs once a mainyatwy correspondence is
found between the nodes of both graphs [20].

Node matching, which is a major problem in graph comparisogeineral, is not
difficult in our case, since we consider that both graphs tatadhe same events or
expressions

A traditional similarity function between two graphs is fielowing [20]:

f(K Ny G) — g(splits(m))
f(KUG)

sim(K, Q) =

where K 1, G is the set of relations shared by both graphs according todice
matching functionn, K U G is the union betweeX andG relations, andwplits(m)
the number of node splits imposed by the matching in map @iohtgraph to the other
(see examples later). Functiofandg depend on the types of graphs and applications.
But this kind of metrics is not appropriate for temporal tiglas, because the tran-
sitivity of relations implies different features; also,ee metrics are symmetrical,
whereas two distinct recall- and precision-like valuesracge desirable. We adapted
the general idea of two functions for split nodes and retasiilarity, and arrived at
the algorithm described below.

3.1 Transitive reduction of endpoint graph

To address the problem of finding minimal graphs and to tatleedncount the relative
importance of relations, we take inspiration from [5] in tmain ideas. First, saturated
graphs between events (intervals) are converted into emdgmaphs. Second, two
nodes linked by an equality relation are merged togethés (hl help guarantee the
unicity of the minimal graph, see below). Figure 6 preseh&sdraph of Figure 2
after this transformation. The resulting point graph isisgted, by definition of the
composition of event relations in Allen’s algebra.

Recall that the graph we consider are built from “convex”@ations, i.e. there
cannot be a < or >" relation between two points. We can keep relatiensind <
without loss of information, since af and> can be obtained by symmetry.

With these specifications, the graph boils down to the digkgraph of a transitive
relation where an edge between two poinendy meanse < y. A coherent graph will

3|f this is not the case, creating fictitious unlinked nodesrie graph or both is enough.



Figure 7: Transitive reduction of an acyclic graph; (a) sithitial closure of a transitive
relation graph; (b) is the set of edges that can be obtaineximposition of edges in
(a), with examples of composition for each edge; (c) is thaditive reduction, the
difference between (a) and (b).

thus be acyclic, since we collapse equal points into singties. It is important to note
that as a consequence, no edge in the transitive closureedabddled with the equality
relation only. Thus we can see our problem as searching édraimsitive reduction of
a graph labelled with the transitive relatigh (but for which we keep the additional
information that some edges can be more precisely labefled iastead of the dis-
junctive <). This is important because the minimal graph is the tranasieduction of
the graph, and the transitive reduction of a directed acyghph is unique [1, 7]. The
transitive reduction of a graph G is by definition the minireet of edges that has the
same transitive closure as G, i.e. the minimal graph G’ shah®’ is a subgraph of
G andG"™ = Gx* whereG* is the transitive closure of G. It is simply determined by
G*/(G* o G*). Algorithm 2 details a simple computation of the transitieeluction
while Figure 7 shows an illustration of the procedure on gééntransitive graph. Fig-
ure 8 shows the process from the initial endpoint graph witth k. and < labels, to
the minimal graph, via transitive reduction of the unlagelgraph.

10



Figure 8: Transitive reduction of a point-based graph;g&he initial annotation trans-
formed into a graph on events endpoints; (b) is the corredipgrgraph as if every
label was<, (c) its transitive reduction and (d) the final minimal graptere the more
precise initial information is reported.
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Algorithm 2 Transitive reduction simple computation
procedure COMPOSKG) > find relations inferable from others

newRels={}
base_rels= { x for x in G.edges() if x.relation()==beforeb@fore_or_equals}

for all one in base_reldo
related = { x for x in G.edges() if x.source()=one.target{@.relation() in
{before,before_or_equals}}

for all other in relatedio
relation = compose(one.relation(),other.relation())
newRels.add(Edge(one.source(),other.target() oelpti
end for
end for
return newRels
end procedure

procedure TRANSITIVE-REDUCTION(G)
G = closure(G)
non_min=compose(G)
for all one in non_mirdo
G.edges().remove(one) > remove relations deduced by composition
end for
for all one in G.edges@o

if one!=before and one!=before_or_equhkn
G.edges().remove(one) > keep only<, < and remove their symmetric
relations
end if
end for
end procedure

12



We call:
e Major relations, the relations of the transitive reductionog;,, .

e Minor relations, the relations of temporal closure which are mesent in the
transitive reduction,e. G* — G in.

Formally:

LetG = {(z,y, R)/R € {<,<}}, the temporal point graph, saturated with respect
to the relation< and<. SoG* = G

Let E(G) = {(z,y)/3R, (z,y, R) € G}, the unlabelled corresponding graph. The
function f which associates (x,y,R) in G to (x,y) in E(G) is an obviougdtion, as
the original graph G has at most one relation holding betveegrtwo vertices. Here
E(G)=f(G). Since G is closed, so is E(G).

Let Proj(G’,G) = {(x,y, R) € G/(x,y) € G'} the “projection” of an unlabelled
graph into a labelled one. The function associating an €dgg) in G’ to (x,y, R) in
Gis the inverse of ff 1. Proj(G’,G)=f~1(G’), and obviouslyProj(E(G), G)) = G.

From [1], itis enough to prove thd (&) (or G) is the graph of a transitive, acyclic
relation to prove thak/(G) has a unique transitive reduction.

First, E(G) is transitive: le{z,y) € F(G) and(y,z) € E(G) then we have
(x,y,<)or(x,y, <) € Gand(y, z, <) or (z,y, <) in G in any of the four possibilities
we can infer eithefz, z, <) or (z, z, <) is in G (because is transitive < is transitive
andz < y < zorz <y < zbothimplyz < z); in other words any composition of
<and<is <, i.e. < o <=< o <=< S0 (X,2) is also in E(G) and E(G) is the graph
of a transitive relation. This is the reason why we said testping a record of ak
relations while considering G as a graph<ofioes not change the graph property.

Second, G is acyclic since is intransitive, and: < y < z impliesz < z so that
the only way to have cycles in G is if there are paths such &sy < z... < z. But
in that case we can infer that= y = z = ... and the nodes would have been fused
beforehand. So E(G) is also acyclic (it has exactly the saedgeés as G).

So, E(G) is acyclic and transitive and thus admits a uniqaesitive reduction

Since the graphs G and E(G) have exactly the same edges, ¢hegsarily have
the same reductions, and thus both have a unique trangtiteetion. We can project
back the original relations of G aB(G) min, (Proj(E(G)min, G)), to have a properly
labelled reduction for G

3.2 Temporal recall and precision

The idea is not to compare only minimal graphs. Temporalwkshould be used as
well. As we showed in Section 2.4, key minor relations shatiltbe rewarded if they
are not redundant in the evaluated graph. However, they caunst a lower weight.
Minor relations are only to be considered in temporal re@ait not in precision.
The reason is that recall evaluates the proportion of ketiogls found by the system,
and this system can find some minor relations without the nmajations that produced
them in the key (se& < D in S4 example, Figure 5). On the opposite, precision
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evaluates the proportion of system relations that are itkélyegraph, and there minor
relations found by the system are by definition redundant.

Our recall-like measure is then a combination of two valu€sven K the key
graph and~ the evaluated graph:

e The major temporal recall is the rate of key major relatidiis,{,,) found inG*.

e The minor temporal recall is the rate of key minor relatioRS  K,,;,) found
in Gonin -

In the first case, the temporal closure is appliedstosince there is no reason to
restrain the search of good relations in the evaluated gitaghe second case, only the
transitive reductiorts,,,;,, is considered; key minor relations must be rewarded only if
they are not minor irG (case ofB < D in exampleS,, Figure 5).G minor relations
have already been assessed through their major relatiass @A < C in example
S4).

The final value of temporal recall is a weighted sum of the twaris.

The precision-like measure is a single value corresponttirthe ratio between
correct relations ir7,,,;,, and its total number of relation& minor relations must not
be considered at all for precision, since they are all rednnd

In precision as well as in recall, a merge must be considesedralation in some
way, because it corresponds to an '=’ relation.

In order to make the measure clearer, we will present theiecriatdetails by de-
veloping a basic example with a transitive closure made ohiimple relations (the
13 basic Allen relations), then we will turn to the more gethease of a closure made
only of convexemporal relations (disjunctions of neighboring Allerat&ns).

4 First simple case: non-disjunctive Allen relations

Consider the sample gragkil made of Allen non-disjunctive relations (see also the
graph in Figure 9):

A|\B|C|D|E|F
s|bi|b|s| b

bi|m| s |m

K= b|lb| b
fle

fi

| O Q| |

The conversion into relations between endpoints lead®tfottowing graph, where
an event A is splitinto A1 and A2. Edges are not labeled simtg ielation '<’ is con-
sidered at this point.

Note that merging equal nodes is not equivalent to labeling with '=", because
in the latter case the minimal graph would not be unique angembor example, the
necessary choice betweell < A2, Bl < A2 andE1 < A2 would lead to three
equivalent but different graphs.

14
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Figure 9: Key with simple relationg{1,,,,.

Consider now that the kel('1 is compared to the following graph1 (Figure 10;
bold green edges are correct relations, thin red edges arggwelations, gray dashed
edges are trivial relations).

Gl (o)

Figure 10: Evaluated graph with simple relatio64,,,;, .

4.1 Notations
e Liis the list of nodes for grap@'i,

— for K1, : L1 = {C1,C2, (A1, B1, E1), A2, (B2, D1, F1), (E2, D2, F2)}:
6 nodes

— for Gl : L2 = {C1, B1, 02, (Al, B2), A2, (D1, E1, F1), (E2, F2),
D2} : 8 nodes

e Non-trivial relations are listed. Trivial relations areofe involving two points
of a same interval. For exampl€]l < C2 is trivial, and thus not considered. In
all figures, trivial relations are in dashed gray.

— for K1, @ R1 = {[C2;(Al, B1, E1)], [A2; (B2, D1, F1)]} : 2 relations

— for G1,.:n - R2 = {[C1; B1],[B1;C2],[C2; (Al, B2)], [A2; (D1, E1, F1)],
[((E2,F2); D2]}] : 5 relations

These relations and the node list are enough to find the fafitgr

e The temporal closure&i* are computed and listed below (bold relations are
those added from the minimal graghe. K1* — K1,,;, andG1* — G1,,;,).
Figures 11 and 12 also represent the closures.

K1* = {[C2; (A1, B1,E1)], [A2;(B2, D1, F1)], [C1; (A1,B1,E1)], [C1;A2],
[C1;(B2,D1,F1)], [Cl;(E2,D2,F2), [C2;A2], [C2: (B2 D1,F1)],
[C2; (E2,D2,F2)], [A2; (E2,D2,F2)]}

G1* = {[C1; B1], [B1;C2], [C2; (A1, B2)], [A2; (D1, E1, F1)], [(E2, F2); D2),
[C1;(A1,B2), [C1;A2], [C1;(D1,E1,F1)], [C1;(E2,F2)], [Cl D2],
[Bl A2, [B1;(D1,E1,F1), [B1;(E2,F2), [B1;D2], [C2;A2]
(C2;(D1,E1,F1)], [C2;(E2,F2)], [C2;D2], [(Al,B2);(D1,E1,F1)],
(A1, B2); (E2, F2)], [(A1, B2); D2], [A2: (E2, F2)], [A2; D2]}
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Figure 12: Temporal closuit@1*. Dotted relations represeGtl* — G -

e The pairing of nodes and the list of splits and merges neetlathtch both sets
of nodes, is also computed (see also Figure 13):

— (A1, B1, E1)k1: 2 splits (“breaking” of 2 equality relations)B2, D1, F'1) k:
1 split (D1 andF'1 stay together iG1); (E2, D2, F2)k1: 1 split

— (A1, B2)¢1: 1 merge (joining two nodes)D1, E1, F1)s1: 1 merge (join-
ing E'1 to the two others){E2, F'2)1: nothing (already together iR'1)

— Total: 4 splits and 2 merges.

A split is like a '=' relation provided by the key but not by tleealuated graph. It
must then be penalized by the recall-like measure. On thesitgy a merge is a '=’
relation given by mistake by the evaluated graph. The pretitke measure should
penalize merges.

An edge inG1 is counted correct if the relation is correct for at least pag of
points from both nodes. For example, relatiof2} 1 — {D1, E1, F1}s; is correct
becausqd A2} k1 — {B2, D1, F1} k1, even if the sub-relatiod2 < E1 is not true.
This latter relation will be penalized anyway because & &ptiecessary for matching
the graphs.

4.2 Temporal recall and precision

Our new metrics of temporal recall and precision rely on tbgéams defined above.
With respect to the recall value, we have shown it was impdttia distinguish “ma-
jor" relations,i.e. relations that belong to the minimal graph, from the otherirfor”
relations. That is why we suggest to compute recall in twpsstePrecision is not
concerned by this issue.

4.2.1 Graph values

Thevaluev(G) of a graphG corresponds to the full number of relations. These rela-
tions can be provided by graph edges (relation value) or lrgetenodes (node value,
corresponding to ‘=’ relations between endpoints):

v(G) = node valuet relation value 1)

16
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Figure 13: Split and merging operations betwééhandG1.

Relation value is the number of edgéy (‘<’ relations), while node value corre-
sponds to the number of ‘=’ relations:

node value= ) _ |m(n;)| - 1 (2)
n; €L

whereL is the set of nodes and(n;) the number of points merged into a node (
points into a node correspondsio— 1 merges). Node value can also be computed

by:

node value= |Eg| x 2 — |L| 3)

where| E¢| is the number of evertts
In our example:

e v(K1,,,) = node valuet relation value=6+2 =8
e U(Glyin) =4+5=9

The number of correct answers in an evaluated grapbpoect valuev,, is the
number of correct ‘=" and ‘<’ non-trivial relations. The nio@r of correct ‘=" is “node
value - merges”, the number of correct ‘<’ is “relation valuerrors”.

v.(G) = (node value- merge$ + (relation value- errorg
= v(G) — (mergest errorg 4)
Ve(Glmin) =9—(242)=5

“Events’ are the intervals (6 in the example diftl1| x 2 = 12 is the number of points), nodes are
the actual vertices in the graph (points or sets of points: &1,,;,). The node value is thus the number of
equality relations used to create sets of points.

17



4.2.2 Temporal recall and precision

A precision value deals with errors (incorrect relations) energes through the correct
valuev.. On the other hand, a recall value must take into accounesigey relations
missed by the graph) and splits.

e Major temporal recallR;(G) is the number of key major relations found &Y.

Konin) — (misses + splits)
wheremisses is the number of relations iIK,,,;,, missed byG* andsplits the
number of splits (a split is a missed ‘=’ relation).

In our exampleR,(G) = =0 — .5

R(G1) = il (5)

e Minor temporal recallr;(G) is the proportion of key minor relationds(* —
Kpin) found by G, Minor relations are seeked in the minimal evaluated
graph. Indeed, as we already said, comparing two relatiams fiion-minimal
graphs is redundant, since major relations that “produtieein have already
been taken into account.

In our exampley;(G1) = 2 = 0.25 (this corresponds t@C'1; { A1, B1, E1}]
and[C2; (B2, D1, F1))).

ol

e Fulltemporal recalll’ R could be defined as a value paR(G), r(G)), or prefer-
ably as a combination:

1

TR(G) = Rt(G) + m

rt(G) (6)

With this formula, we ensure that one single major relatétter than all
minor ones and that the recall can not exceed 1 (see nexbBgcti

In our exampleT'R(G1) = (0.5,0.25) or orTR(G1) = 0.5+ %25 = 0.53

e Temporal precisioril’ P(G) is simply the ratio between theorrect valueof
Gins Ve(Gmin), and its fullvaluev(G i ).

Ve (szn )

TP(G) = (Comin)

(7)

In our exampleT' P(G1) = 2 = 0.56

4.2.3 Boundaries

Temporal precision. Temporal precision is a value between 0 and 1 sin¢ér) <
v(@G) (errors and merges are zero or positive).

18
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TeSilg (2 major and 2 minor relations)

Figure 14: Temporal recall of simple graphs, compared to/Key

Temporal Recall. Major recall is between 0 and 1.

e If 1, then minor recall;(G) = 0, because all relations i&¥,,,;,, are already in
K,in (and then cannot be iIR* — K,,,;,,). In this case temporal recall cannot
exceed 1.

e Ifnot1l,
Rt(G) S (U(Kmln) — 1)/’0(sz”) Yet, mTt(G) < m, and the fu”
temporal recall stays below 1. ' '

Then0 < TR(G) < 1.

4.2.4 Simple examples

Temporal recall and precision as described above lead texpected values for the
sample graphs pictured in Figure 5 and analysed in Sectibn 2.

Figure 14 recalls these graphs and details the tempordl retaes for each of
them (given that (K., ) = 3). As for precision, for each grapt, TP(S;) = 1.

5 Disjunctive convex relations
We now apply the metric to sets of convex relations. Convéatioms are a set of
relations that areonceptual neighborshat is they encode relations that may be vague

but in which intervals endpoints can only be in convex subsétthe timeline (see
Section 2.2).
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J = < < > >
Rel| Repres. OO OO
_ 1 0 0.5 0 0.5
B s (* L -split’) (* L -split’)
. 0 1 0.5 0 0
< o
(disjunction)
. . 1 .
< R I ° o0
“ 5-merge”) (disjunction) (disjunction)
< 0 0 0 1 0.5
> | &= o
(disjunction)
> 10.5 0 | 05 _ 05 1
(* 3-merge”) (disjunction) (disjunction)

Table 3: Example weights for relaxed measures.

Building the minimal graph follows the same procedure ada®pd above (tran-
sitive reduction). The measures do not differ at all if we@bmastrict scoring scheme
(see Section 2.3). But inrelaxedscheme, it becomes necessary to apply a weighting
scheme; a response is no longer assigned a binary value §Otort¥or example one
of the values in Table 3.

As shown in that table, the relaxed measure has an effevigsesalues and on,

(a relation can get a half-point), but also on merge and galites (where half-points
are also possible).

Consider a new keyk 2 with convex relations (see also Figure 15):

A|B C D E F
A s > VmiV < S <
otV fiv =V
fvdivsi
B diVsiV m s m
otvVmaiV >
C < | dVsV <
ovm
V<
D f sV = Vsi
E div
fivo

The characteristics of K2 are:

e 7 nodes for 6 events (5 equality relations)

e 2relations[C2 < A2],[A2 < {B2, D1, F1}]

o K2* = [02 < A2], [A2 < {B2,D1,F1}], C1 < A2, C1 < {B2,D1,F1},
C1 < {E2,D2},C1 < F2,C2 < {B2,D1,F1},C2 < {E2, D2}, C2 < F2,
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)
Figure 15: Key with convex relationg 2,,,,,.

{A1,B1,E1} < F2, A2 < {E2,D2}, A2 < F2
o U(K2in) =(12-7)4+2=1.
Let us consider an evaluated gra@i (Figure 16) which has:
e 10 nodes for 6 events (2 equality relations)

e 5relations:[C1 < D1],[D2 < C2],[C2 < A2],[{Al,B1} < F1],[42 <
{B2,F1}]

e G2* = [C1 < D1], [D2 < C2], [C2 < A?2], [{Al,B1} < E1], [A2 <
{B2,F1}],[C1 < D2],[C1 < A2], [C1 < {B2,F1}],[C1 < F2],[D1 < C2],
[D1 < A2], [D1 < {B2,F1}], [D1 < F2], [D2 < A2], [D2 < {B2,F1}],
D2 < F2],[C2 < {B2,F1}],[C2 < F2], [A2 < F2], [{A1,B1} < F2], [{A1,B1} < E2]

e V(G2min) =(12-10)+5="7.

There is no merge and the number of splits is 2.5. The “hdif*gmmes from the
fact that E1 may be equal {041, B1}, because of the:,= edge.

@=@ @@
@@

Figure 16: Evaluated graph with convex relatio®,,,;,, .

The application of the same measures leads to the follovahgeg:

7—(0+2.5)

R (G2) = =0.64
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r(G2) =0
TR(G2) = 0.64
0e(G2) = (12+2%1/2) +2 =15

The two half-points irnv.(G2) hold for relationsC'1 < D1 (instead ofC'1 < D1
in the key) andB1 < F1 (instead ofB1 = E1 in the key).

As an example, and following Table 3, we can see thatleaving the group
{A1, B1, E1} costs a half-point to the recall value, while relati® < E1, cor-
rect but imprecise, gets a half-point of precision. Bothulissare logical behaviors of
the measure in our opinion.

6 Experiments

As stated in [21], a recall measure is expected to decreaadimear way when the
amount of information decreases. This behavior can be atedlby comparing a given
annotation with the same annotation where temporal inftonés taken out one piece
atatime.

6.1 Aurtificial graphs

First we perform an experiment on artifically built graphshisTexperiment is per-
formed in the following way:

e For a given numbeFE of events, a temporal graph is built randomly. To be com-
parable to a graph built from a text, events are considerad@wvals with some
uncertainty about their endpoints, giving rise to possilijunctive relations be-
tween the generated events. This graph can contain any kawheex (possibly
disjunctive) Allen relations. The graphis closed, leadmy = (Ex(E—1))/2
relations.

e From this graphR relations are randomly removed. Recall is expected to de-
crease in proportion to the number of removed relations. s Dieration is
achieved several times fdt betweenl and N °.

e Figure 17 shows the different values of strict recall, gafieed (relaxed) re-
call and our temporal recall (callgmbint recall) according to the proportion of
relations kept in the graph.

It is interesting to note that the curve based on the minimegblgs is almost linear,
while other measures increase faster, in a more parabolic wall graphs contain
redundant information, and recall increases then artilfjci@his is not the case when
considering minimal graphs, where redundancy has beervein@his is all the more
important as a corpus includes texts of various lengths atidawarying number of

5In Figure 17,E = 10, and 5 different graphs are built for each valueRpthis leads to a total number of
216 incomplete graphs. This is done for 10 full graphs; Theréds then a smooth curve made of averaged
points coming from 2160 different graphs.
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Figure 17: Behavior of recall measures according to the atnafutemporal informa-
tion

events, in order to avoid to give too much weight to the lontgets, either in the
evaluation of the task or in training classifiers. We havdrstance also compared the
number of relations present in a minimal graph obtained agditive reduction with
that of the temporal closure of the interval-based grapth vespect to the number of
events present in the text, on the whole TimeBank Corpudtlappears that minimal
graph grows roughly linearly as expected (the variancegbeire to variable multiple
branching when there is a lot of uncertainty), while the terapclosure is larger, much
more irregular, with greater variance when the number ofits/grows.

6.2 TimeBank corpus

We also did the same experiment on a sample of texts from TamkBvith much more
irregular results (Figure 18) but the same phenomenon cabserved (a linear de-
crease of point recall), with a larger unstability when adtrall relations are removed.

TimeBank is a real ressource, but it is less controlled anddgenous than a set
of artificial graph, because human annotators make mistékget relations, or intro-
duce inconsistencies. That is at least in part why we obseteé more noise in the
experimental results.

Finally, to estimate the behavior of precision measuresshghtly change the
above experiment by switching more and more relations ferdifiit ones, thus ‘disturb-
ing’ the initial graph, while trying to keep it consistentgain we did this a number of
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Figure 18: Behavior of recall measures according to the artnofutemporal informa-
tion (TimeBank)
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Figure 19: Behavior of recall measures according to the atnafutemporal informa-
tion (TimeBank)

times, and averaged the results on points with similar rat@disturbed relations. The
result, shown Figure 19, confirms that the point-based nredsllows more closely
the ideal ‘y=x’ function, with again some unstability whevetgraph is very disturbed.

7 Conclusion

Comparing temporal constraints graphs is crucial in thi tdsextracting temporal
information from texts, both from an evaluation point ofwiand in the perspective
of incorporating global constraints in statistical leagniprocedures. We argue here
for comparison measures devoid of some of the biases inhiarlre commonly used
comparisons of closures of Allen-based temporal graph® riibasure is defined on
the transitive reductions of the graph of (partially) oetkinterval endpoints. Tran-
sitive reduction is conceptually intuitive, easy to congand is unique in the cases
considered. We have shown empirically that the behaviohigfkind of measures is
appropriate with the goals we had in mind.

We do not claim that ordering interval endpoints should bres@tered as annotation
provided by humans, only that the translation is possibtewseful. It remains unclear
if this could also be an acceptable way of presenting tentjiicdmation to humans,
or how the resulting minimal graph could be meaningfullytnanslated into interval-
based relations. We also plan to check our assumption tieapthcedure could be
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useful in the task of learning temporal constraints by irdégn of global constraints
(for instance as a good indication of how close are two tem®ituations).
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