
Evaluating Temporal Graphs built from Texts via
Transitive Reduction

Abstract

Temporal information has been the focus of recent attentionin information ex-
traction, leading to some standardization effort, in particular for the task of relating
events in a text. Part of this effort addresses the ability tocompare two annotations
of a given text, while relations between events in a story areintrinsically interde-
pendent and cannot be evaluated separately. A proper evaluation measure is also
crucial in the context of a machine learning approach to the problem. Finding a
common comparison referent at the text level is not an obvious endeavour, and we
argue here in favor of a shift from event-based measures to measures on a unique
textual object, a minimal underlying temporal graph, or more formally the transi-
tive reduction of the graph of relations between event boundaries. We support it
by an investigation of its properties on synthetic data and on a well-know temporal
corpus.

1 Introduction

Temporal processing of texts is a somewhat recent field from amethodological point
of view, even though temporal semantics has a long tradition, dating back at least to the
1940’s [15]. While theoretical and formal linguistic approaches to temporal interpreta-
tion have been very active in the 1990s, empirical approaches were less frequent, and
very few natural language processing systems were evaluated beyond a few instances.

Temporal information being essential to the interpretation of a text and thus cru-
cial in applications such as summarization or information extraction, it has received
growing attention in the 2000s [9] and has lead to some standardization effort through
the TimeML initiative [17]. We address here a central part inthis task, namely the ex-
traction of the network of temporal relations between events described in a text. Since
temporal information is not easily broken down into local bits of information, there
are many equivalent ways to express the same ordering of events. Human annotation
is thus notoriously difficult [19] and comparisons between annotations cannot rely on
simple precision/recall-type measures. The given practice nowadays has been to com-
pute some sort of transitive closure over the network/graphof constraints on temporal
events (usually expressed in the well-known Allen algebra [2], or a sub-algebra), and
then either compare the sets of simple temporal relations that are deduced from it, or
measure the agreement between the whole graphs, including disjunctions of informa-
tion [23]. This reasoning model is also used to help the building of representations of
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Figure 1: Allen relations. Each relationr has an inverse relationri.

temporal situations by imposing global constraints on top of local decision problems
[4, 22, 3].

We purpose to take a different route here, by extracting a single referent graph, a
minimal graphof constraints. There are a number of ways of doing this and weargue
for going after the graph of relations between event boundaries. We aim to accomplish
two things by doing so: to find a graph that is easy to compute, and to eliminate a
bias introduced by measures that do not take into account thecombinatorial aspect of
agreement on transitive closure graphs.

The next section presents in more detail the usual way of comparing annotation
graphs between temporal entities extracted from a text, andthe problems it raises.
Then we argue for comparing event boundaries instead of events and define two new
metrics that apply to that type of information. We focus on convex relations, a tractable
sub-algebra of Allen relations, which covers human annotations. Finally, we present
an empirical study of the behavior of these measures on generated data and on the
TimeBank Corpus [14] to support our claim of the practicality of this methodology.

2 Comparing temporal constraint networks

Works on temporal annotation of texts strongly rely on Allen’s interval algebra. Allen
represents time and events as intervals, and states that 13 basic relations can hold
between these intervals (see Figure 1 and Table 1). These binary relations, existing
amongst all intervals of a collection (in our case, of a text), define a graph where nodes
are the intervals and where edges are labeled with the set of relations which may hold
between a pair of nodes.

We are interested in this paper in evaluating systems annotating texts by temporal
relations holding between events or between temporal expressions and events. Evalu-
ations are often not performed on graphs of relations between all events in a text, but
on the subproblem of ordering pairs of successively described events [10, 23] or even
same-sentence events [8]1. The main reason of this choice is the difficulty of the task,

1Exceptions exist, as [11] and [12].
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Relation Meaning Endpoint relations Inverse relation

I < J I before J I2 < J1 I > J
I m J I meets J I2 = J1 I mi J
I o J I overlaps J I1 < J1 ∧ I2 < J2 ∧ J1 < I2 I oi J
I s J I starts J I1 = J1 ∧ I2 < J2 I si J
I d J I during J J1 < I1 ∧ I2 < J2 I di J
I f J I finishes J J1 < I1 ∧ I2 = J2 I fi J

I = J I equals J I1 = J1 ∧ I2 = J2

Table 1: Allen relations. Each relationr has an inverse relationri. An intervalI starts
atI1 and ends atI2.

even for human beings, of assigning temporal relations in a large text [19]. Another is-
sue is that evaluation of full temporal graphs is still an open question, as will be further
discussed in this section.

We detail now important notions concerning temporal networks and the comparison
of these networks. All example relations given in this section are expressed in terms of
Allen algebra, whose set of relations and their abbreviations are recalled in Table 1.

2.1 Temporal Closure

Temporal closure is an inferential closure mechanism that consists in composing known
pairs of temporal relations in order to obtain new relations, up to a fixed point.E.g.: if
A < B andC dB, thenA < C; the transition can lead to a disjunction of relations,
for example ifA < B andB dC thenA < C ∨ AoC ∨ Am C ∨ AdC ∨ As C.

A table of all composition rules in Allen algebra can be foundin [2] or [16], and
a sample for a few basic relations is given in Table 2. These new relations do not
express new intrinsic constraints, but make the temporal situation more explicit. A
constraint propagation algorithm ensures that all existing temporal relations are added
to the network, labelling an inconsistency with∅ [2]. This algorithm is sound, but
not complete, as it does not detect all cases of inconsistency. See the simple version
presented in Algorithm 1. More efficient versions for large,dense graphs have also
been developped [25] (and we use one of them), but it is not ourmain focus here.

It is not possible to compare temporal graphs without performing a temporal closure
on them. Indeed, there are several ways to encode the same temporal information in a
graph, as shown in Figure 2. Only temporal closure makes explicit what is implicit and
shows that two graphs are identical or different. But temporal closure also produces
redundant information, which can lead to evaluation issues, as will be explained in
Section 2.4.

In this paper, we callG∗ the temporal closure of a graphG.

2.2 Time point algebra and convex relations

Interval graphs can be easily converted into graphs betweenpoints [25] (where an event
is split into a beginning and an ending point; the mapping between Allen relations and
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Figure 2: Three identical annotations. The last one is the result of temporal closure.

ր < > d di

< < all < o m d s <
> all > > oi mi d f >
d < > d all
di < o m di fi > oi di mi si o oi d s f di si fi = di

Table 2: Composition between a few Allen relations.

Algorithm 1 Temporal closure
Let U = the disjunction of all 13 Allen relations,
Rm,n = the current relation between nodesm andn

procedure CLOSURE(G)
A=G.edges()
N=G.vertices()
changed = True
while changeddo

changed = False
for all pairs of nodes(i, j) ∈ N × N do

for all k ∈ N such that((i, k) ∈ A ∧ (k, j) ∈ A) do
R1i,j = (Ri,k ◦ Rk,j)
if no edge (a relationR2i,j) existed before betweeni and j then

R2i,j = U
end if
Ri,j = R1i,j ∩ R2i,j ⊲ intersect
if Ri,j = ∅ then error ⊲ inconsistency detected
else ifRi,j = U then do nothing ⊲ no new information
else

update edge (i,j)
changed = True

end if
end for

end for
end while

end procedure
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Figure 3: Endpoint graph (same temporal information as Figure 2).

point relations is given by Table 1). This leads to a smaller set of simple relations:
equality (=) and precedence (< and >), and a simpler algebra,with only 7 consistent
vectors ({<}, {<, =}, {=}, {<, =, >}, {>}, {>=}, {<, >}where a set denotes a dis-
junction of relations). The point algebra is defined by the four relationsr1 to r4 between
beginning and end points of the two intervalsI andJ (I1 r1 J1, I2 r2 J2, I1 r3 J2 and
I2 r4 J1). Converting an Allen graph into an endpoint graph is straightforward, see
the correspondance in Table 1. Figure 3 shows a point graph equivalent to the interval
graph of Figure 2.

As with the interval algebra, pairs of point relations can becombined and the tem-
poral closure can be computed in the same way. The relation between two time points
is continuousif the assigned set of simple relations is convex [25].

A so-calledconvex relationcorresponds to cases where relationsr1 to r4 are as-
signed to one of the 6 possible relations{<}, {<, =}, {=}, {<, =, >}, {>}, {>=}2,
considered asconceptual neighbors[6]. Using only these relations between endpoints
restricts interval relations to sets of Allen relations that areconceptual neighbors, that
is they encode relations that may be vague but in which intervals endpoints can only be
in convex subsets of the timeline. Figure 4 shows which Allenrelations are conceptual
neighbors. Another useful way of seeing these conceptual neighbors is by considering
continuous transformations of an interval endpoints on thetimeline: when a relationr
holds between two intervalsI1 andI2, moving continuously their endpoints can only
change the relation to a conceptual neighbor ofr, for instance such a conceptual trans-
formation cannot change a situation whereI1 startsI2 to a situation whereI1 < I2

without going through (at least) intermediary situationsI1overlapsI2 andI1 meetsI2.
Finally, instead of213 possible disjunctive relations in Allen algebra, the set ofcor-

responding interval convex relations is reduced to 82. The corresponding sub-algebra
is tractable, that is the problem of the satisfiability of a set of constraints has a sound
and complete polynomial time algorithm. Moreover, it will ensure the uniqueness of
minimal graphs, as will be defined and described in this paper.

See [18] for a more complete presentation within a natural language processing

2The 7 relations described above, except{<, >}, noted also6=. These form a sub-algebra: compositions
of disjunctions of these relations are disjunctions of these relations. Before OR after is not part of this
sub-algebra.
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Figure 4: Temporal relations which are conceptual neighbors

perspective.
It is important to note that in a temporal graph built from text there are only convex

relations since the graph is generated from a finite set of base relations, themselves
mostly (if not always) convex relations, and the set of all convex relations forms a sub-
algebra. In the corpus we consider, we never met non-convex temporal annotations.

2.3 Strict and relaxed measures

In the general case, both humans and systems may assign disjunctions of atomic rela-
tions between two events (i.e. A < B ∨ Am B). This is a way to reduce vagueness
even if the exact relation is not known.

The presence of disjunctions raises the question of how to score relations that are
only partly correct, likeA < B ∨ Am B instead ofA < B or the reverse.

A strict measure only counts exact matching as success, and will for example score
0 for the latter example.

But we think that an evaluation measure should take better account of “close matches”.
For example, suppose that the gold standard relation betweenA andB is A < B. If the
system chooses the disjunctionA < B ∨ Am B, it must be rewarded less thanA < B
but more thanA > B or nothing. The system is vaguer but correct, as its annotation is
a logical consequence of the standard annotation.

We proposed in [13] such a gradual measure that we might call “temporal” preci-
sion and recall. IfSi,j is the (possibly disjunctive) relation betweeni andj given by
the system andKi,j the (possibly disjunctive) gold standard, then:

Ptemp i,j =
Card( Si,j ∩Ki,j )

Card(Ki,j ) Rtemp =
Card(Si,j ∩Ki,j )

Card(Si,j )

With Card(Gi,j) = the number of atomic relations present in the disjunction.Thus,
in our example, the systemS1 that answeredbefore∨ overlapsbetweeni andj will
get:

Ptemp i,j,S1
=

Card( (before∨ overlaps) ∩ before)
Card( before)

= 1

6



Rtemp i,j,S1
=

Card( (before∨ overlaps) ∩ before)
Card( before∨ overlaps)

=
1

2

While S2 that answeredafter will get Ptemp i,j,S2
= Rtemp i,j,S2

= 0.
The final precision (resp. recall) is the average on the number of relations given by

the system (resp. by the key):

Ptemp =

i=n∑

i=1

j=n∑

j=i+1

Ptemp i,j

Card(S) Rtemp =

i=n∑

i=1

j=n∑

j=i+1

Rtemp i,j

Card(K)

Similar measures have also been used during the TempEval evaluation campaign
in 2007 [23] and were calledrelaxedrecall and precision. We will use the wordsstrict
andrelaxedto designate these two ways to score temporal relations.

2.4 Relative importance of relations

As shown above, temporal closure is necessary in order to able to compare properly
two temporal graphs. But in a temporal graph, relations do not have all the same
importance. Applying basic recall and precision scores (either strict or relaxed) on
closed temporal graphs is not enough. Consider the very simple graph examples of
Figure 5, in which the first graphK is the gold standard.S1 contains only two relations,
against six inK. But it seems unfair to consider a recall score of2

6 , since adding only
one relation (B < C) would be enough to infer all others. An intuitive recall would be
around2

3 .
Even if we suppose that we have a way to distinguish unambiguously “major”

relations (bold lines inK) from “minor” (useless) ones (dotted lines), it would stillnot
be enough. Indeed, graphS2 finds the relation “B < D”. This relation is minor inK,
because it can be found by composing other relations; but inS2, it is not the case, this
relation actually carries a piece of information and must then be rewarded. However,
even if the amount of temporal information brought byS2 andS3 seem equivalent,
S3 should get a higher score. Indeed, the amount ofmissingrelations (to come to the
full graph) is much lower inS3 (only “C < D” is missing) than inS2. Finally, S4

should get a better recall than any other one. General cases involving all relations are
obviously much more complex.

Precision is affected in a similar manner, since errors on major relations are likely
to be propagated on inferred ones. The same kind of problem could be found in the
co-reference task of MUC-6, and was addressed by considering a spanning tree of the
graph of co-reference [24]. Any spanning tree is enough to encode equality networks
since equality is an equivalence relation.

2.5 “Minimal” graphs

As said in previous section, a good, but insufficient way to deal with the relative im-
portance of graph relations would be to work on what we called“major” relations, or
“minimal graph”. We consider that a temporal graphGmin is a “minimal graph” of a
graphG if:
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Figure 5: What a metric should deal with.

1. Its temporal closure leads to the same temporal information asG.

2. No relation can be removed from this graph without breaking the first property.

Unfortunately, a unique minimal graph does not exist in the general case, and in
particular for Allen relations. [16] proposes a way to find all minimal graphs for a
given temporal graph. Their algorithm first finds thecore relations by intersecting all
derivations and then computes all possible remaining combinations in order to find
those composing a minimal graph.

For example, for the relationRA,B betweenA andB, derivations areRA,C ◦RC,B,
RA,D ◦RD,B, RA,E ◦RE,B, etc. If the intersection of all these derived relations equals
RA,B, it means thatRA,B is not acorerelation, since it can be obtained by composing
some other relations. Otherwise, the relation is acorerelation, since removing it always
leads to a loss of information. This operation is computationally feasible. The way this
kernel is obtained ensures its uniqueness.

The second part of the procedure (compute remaining combinations) is computa-
tionally impractical for even medium-sized graphs, and theauthors do not detail much
their empirical investigations.

Turning back to the evaluation, [21] suggests the comparison of graphs through
core relations, which are easy to compute and give a good idea of how important the
relations are in a same graph. But core relations do not contain all the information
provided by closed graphs, and measures on core graphs are only an approximation of
what should be assessed. In this paper, we propose a mathod toobtain a unique graph
respecting the two constraints above.
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Figure 6: Endpoint graph with merges (same temporal information as Figure 3). Gray
dashed arcs are trivial relations.

3 Proposed new metric

When confronting a graph to a gold standard, a similarity measure is necessary. Many
similarity measures exist between two graphs once a many-to-many correspondence is
found between the nodes of both graphs [20].

Node matching, which is a major problem in graph comparison in general, is not
difficult in our case, since we consider that both graphs annotate the same events or
expressions3.

A traditional similarity function between two graphs is thefollowing [20]:

sim(K, G) =
f(K ⊓m G) − g(splits(m))

f(K ∪ G)

whereK ⊓m G is the set of relations shared by both graphs according to thenode
matching functionm, K ∪ G is the union betweenK andG relations, andsplits(m)
the number of node splits imposed by the matching in map to obtain a graph to the other
(see examples later). Functionsf andg depend on the types of graphs and applications.

But this kind of metrics is not appropriate for temporal relations, because the tran-
sitivity of relations implies different features; also, these metrics are symmetrical,
whereas two distinct recall- and precision-like values aremore desirable. We adapted
the general idea of two functions for split nodes and relation similarity, and arrived at
the algorithm described below.

3.1 Transitive reduction of endpoint graph

To address the problem of finding minimal graphs and to take into account the relative
importance of relations, we take inspiration from [5] in twomain ideas. First, saturated
graphs between events (intervals) are converted into endpoint graphs. Second, two
nodes linked by an equality relation are merged together (this will help guarantee the
unicity of the minimal graph, see below). Figure 6 presents the graph of Figure 2
after this transformation. The resulting point graph is saturated, by definition of the
composition of event relations in Allen’s algebra.

Recall that the graph we consider are built from “convex” annotations, i.e. there
cannot be a “< or >” relation between two points. We can keep relations< and≤
without loss of information, since all> and≥ can be obtained by symmetry.

With these specifications, the graph boils down to the directed graph of a transitive
relation where an edge between two pointsx andy meansx ≤ y. A coherent graph will

3If this is not the case, creating fictitious unlinked nodes inone graph or both is enough.
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Figure 7: Transitive reduction of an acyclic graph; (a) is the initial closure of a transitive
relation graph; (b) is the set of edges that can be obtained bycomposition of edges in
(a), with examples of composition for each edge; (c) is the transitive reduction, the
difference between (a) and (b).

thus be acyclic, since we collapse equal points into single nodes. It is important to note
that as a consequence, no edge in the transitive closure can be labelled with the equality
relation only. Thus we can see our problem as searching for the transitive reduction of
a graph labelled with the transitive relation≤ (but for which we keep the additional
information that some edges can be more precisely labelled as < instead of the dis-
junctive≤). This is important because the minimal graph is the transitive reduction of
the graph, and the transitive reduction of a directed acyclic graph is unique [1, 7]. The
transitive reduction of a graph G is by definition the minimalset of edges that has the
same transitive closure as G, i.e. the minimal graph G’ such that G’ is a subgraph of
G andG′∗ = G∗ whereG∗ is the transitive closure of G. It is simply determined by
G∗/(G∗ ◦ G∗). Algorithm 2 details a simple computation of the transitivereduction
while Figure 7 shows an illustration of the procedure on a simple transitive graph. Fig-
ure 8 shows the process from the initial endpoint graph with both < and≤ labels, to
the minimal graph, via transitive reduction of the unlabelled graph.
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Figure 8: Transitive reduction of a point-based graph; (a) is the initial annotation trans-
formed into a graph on events endpoints; (b) is the corresponding graph as if every
label was≤, (c) its transitive reduction and (d) the final minimal graphwhere the more
precise initial information is reported.
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Algorithm 2 Transitive reduction simple computation
procedure COMPOSE(G) ⊲ find relations inferable from others

newRels={}
base_rels= { x for x in G.edges() if x.relation()==before orbefore_or_equals }

for all one in base_relsdo
related = { x for x in G.edges() if x.source()=one.target() and x.relation() in

{before, before_or_equals} }

for all other in relateddo
relation = compose(one.relation(),other.relation())
newRels.add(Edge(one.source(),other.target(),relation))

end for
end for
return newRels

end procedure

procedure TRANSITIVE-REDUCTION(G)
G = closure(G)
non_min=compose(G)
for all one in non_mindo

G.edges().remove(one) ⊲ remove relations deduced by composition
end for
for all one in G.edges()do

if one!=before and one!=before_or_equalsthen
G.edges().remove(one) ⊲ keep only<,≤ and remove their symmetric

relations
end if

end for
end procedure

12



We call:

• Major relations, the relations of the transitive reduction, orGmin.

• Minor relations, the relations of temporal closure which are not present in the
transitive reduction,i.e. G∗ − Gmin.

Formally:
LetG = {(x, y, R)/R ∈ {<,≤}}, the temporal point graph, saturated with respect

to the relation< and≤. SoG∗ = G
Let E(G) = {(x, y)/∃R, (x, y, R) ∈ G}, the unlabelled corresponding graph. The

functionf which associates (x,y,R) in G to (x,y) in E(G) is an obvious bijection, as
the original graph G has at most one relation holding betweenany two vertices. Here
E(G)=f(G). Since G is closed, so is E(G).

Let Proj(G′, G) = {(x, y, R) ∈ G/(x, y) ∈ G′} the “projection” of an unlabelled
graph into a labelled one. The function associating an edge(x, y) in G’ to (x, y, R) in
G is the inverse of f,f−1. Proj(G’,G)=f−1(G’), and obviouslyProj(E(G), G)) = G.

From [1], it is enough to prove thatE(G) (or G) is the graph of a transitive, acyclic
relation to prove thatE(G) has a unique transitive reduction.

First, E(G) is transitive: let(x, y) ∈ E(G) and (y, z) ∈ E(G) then we have
(x, y, <) or (x, y,≤) ∈ G and(y, z, <) or (x, y,≤) in G in any of the four possibilities
we can infer either(x, z, <) or (x, z,≤) is in G (because< is transitive,≤ is transitive
andx < y ≤ z or x ≤ y < z both implyx < z); in other words any composition of
< and≤ is <, i.e. < ◦ ≤=≤ ◦ <=< so (x,z) is also in E(G) and E(G) is the graph
of a transitive relation. This is the reason why we said that keeping a record of all<
relations while considering G as a graph of≤ does not change the graph property.

Second, G is acyclic since< is intransitive, andx < y ≤ z impliesx < z so that
the only way to have cycles in G is if there are paths such asx ≤ y ≤ z... ≤ x. But
in that case we can infer thatx = y = z = ... and the nodes would have been fused
beforehand. So E(G) is also acyclic (it has exactly the samededges as G).

So, E(G) is acyclic and transitive and thus admits a unique transitive reduction
E(G)min.

Since the graphs G and E(G) have exactly the same edges, they necessarily have
the same reductions, and thus both have a unique transitive reduction. We can project
back the original relations of G onE(G)min, (Proj(E(G)min , G)), to have a properly
labelled reduction for G

3.2 Temporal recall and precision

The idea is not to compare only minimal graphs. Temporal closure should be used as
well. As we showed in Section 2.4, key minor relations shouldstill be rewarded if they
are not redundant in the evaluated graph. However, they mustcarry a lower weight.

Minor relations are only to be considered in temporal recall, and not in precision.
The reason is that recall evaluates the proportion of key relations found by the system,
and this system can find some minor relations without the major relations that produced
them in the key (seeB < D in S4 example, Figure 5). On the opposite, precision

13



evaluates the proportion of system relations that are in thekey graph, and there minor
relations found by the system are by definition redundant.

Our recall-like measure is then a combination of two values.Given K the key
graph andG the evaluated graph:

• The major temporal recall is the rate of key major relations (Kmin) found inG∗.

• The minor temporal recall is the rate of key minor relations (K∗ −Kmin) found
in Gmin.

In the first case, the temporal closure is applied toG, since there is no reason to
restrain the search of good relations in the evaluated graph. In the second case, only the
transitive reductionGmin is considered; key minor relations must be rewarded only if
they are not minor inG (case ofB < D in exampleS2, Figure 5).G minor relations
have already been assessed through their major relations (case ofA < C in example
S4).

The final value of temporal recall is a weighted sum of the two figures.
The precision-like measure is a single value correspondingto the ratio between

correct relations inGmin and its total number of relations.G minor relations must not
be considered at all for precision, since they are all redundant.

In precision as well as in recall, a merge must be considered as a relation in some
way, because it corresponds to an ’=’ relation.

In order to make the measure clearer, we will present the metric in details by de-
veloping a basic example with a transitive closure made onlyof simple relations (the
13 basic Allen relations), then we will turn to the more general case of a closure made
only of convextemporal relations (disjunctions of neighboring Allen relations).

4 First simple case: non-disjunctive Allen relations

Consider the sample graphK1 made of Allen non-disjunctive relations (see also the
graph in Figure 9):

K1 =

A B C D E F
A s bi b s b
B bi m s m
C b b b
D f e
E fi

The conversion into relations between endpoints leads to the following graph, where
an event A is split into A1 and A2. Edges are not labeled since only relation ’<’ is con-
sidered at this point.

Note that merging equal nodes is not equivalent to labeling arcs with ’=’, because
in the latter case the minimal graph would not be unique any more. For example, the
necessary choice betweenA1 < A2, B1 < A2 andE1 < A2 would lead to three
equivalent but different graphs.

14
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Figure 9: Key with simple relations,K1min.

Consider now that the keyK1 is compared to the following graphG1 (Figure 10;
bold green edges are correct relations, thin red edges are wrong relations, gray dashed
edges are trivial relations).

G1min C1 B1 C2
A1

B2
A2

D1

E1

F1

E2

F2
D2

Figure 10: Evaluated graph with simple relations,G1min.

4.1 Notations

• Li is the list of nodes for graphGimin:

– for K1min : L1 = {C1, C2, (A1, B1, E1), A2, (B2, D1, F1), (E2, D2, F2)} :
6 nodes

– for G1min : L2 = {C1, B1, C2, (A1, B2), A2, (D1, E1, F1), (E2, F2),
D2} : 8 nodes

• Non-trivial relations are listed. Trivial relations are those involving two points
of a same interval. For example,C1 < C2 is trivial, and thus not considered. In
all figures, trivial relations are in dashed gray.

– for K1min : R1 = {[C2; (A1, B1, E1)], [A2; (B2, D1, F1)]} : 2 relations

– for G1min : R2 = {[C1; B1], [B1; C2], [C2; (A1, B2)], [A2; (D1, E1, F1)],
[(E2, F2); D2]}] : 5 relations

These relations and the node list are enough to find the full graph.

• The temporal closuresGi∗ are computed and listed below (bold relations are
those added from the minimal graph,i.e. K1∗ − K1min andG1∗ − G1min).
Figures 11 and 12 also represent the closures.

K1∗ = {[C2; (A1, B1, E1)], [A2; (B2, D1, F1)], [C1; (A1,B1,E1)], [C1;A2],
[C1; (B2,D1,F1)], [C1; (E2,D2,F2)], [C2;A2], [C2; (B2,D1,F1)],
[C2; (E2,D2,F2)], [A2; (E2,D2,F2)]}
G1∗ = {[C1; B1], [B1; C2], [C2; (A1, B2)], [A2; (D1, E1, F1)], [(E2, F2); D2],
[C1; (A1,B2)], [C1;A2], [C1; (D1,E1,F1)], [C1; (E2,F2)], [C1;D2],
[B1;A2], [B1; (D1,E1,F1)], [B1; (E2,F2)], [B1;D2], [C2;A2],
[C2; (D1,E1,F1)], [C2; (E2,F2)], [C2;D2], [(A1,B2); (D1,E1,F1)],
[(A1,B2); (E2,F2)], [(A1,B2);D2], [A2; (E2,F2)], [A2;D2]}
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K1∗
A2

B2

D1

F1

E2

D2

F2

A1

B1

E1

C1 C2

Figure 11: Temporal closureK1∗. Dotted relations representK1∗ − Kmin.

G1∗
C1 B1

A1

B2
A2

D1

E1

F1

E2

F2
D2C2

Figure 12: Temporal closureG1∗. Dotted relations representG1∗ − Gmin.

• The pairing of nodes and the list of splits and merges needed to match both sets
of nodes, is also computed (see also Figure 13):

– (A1, B1, E1)K1: 2 splits (“breaking” of 2 equality relations);(B2, D1, F1)K1:
1 split (D1 andF1 stay together inG1); (E2, D2, F2)K1: 1 split

– (A1, B2)G1: 1 merge (joining two nodes);(D1, E1, F1)G1: 1 merge (join-
ing E1 to the two others);(E2, F2)G1: nothing (already together inK1)

– Total: 4 splits and 2 merges.

A split is like a ’=’ relation provided by the key but not by theevaluated graph. It
must then be penalized by the recall-like measure. On the opposite, a merge is a ’=’
relation given by mistake by the evaluated graph. The precision-like measure should
penalize merges.

An edge inG1 is counted correct if the relation is correct for at least onepair of
points from both nodes. For example, relation{A2}G1 → {D1, E1, F1}G1 is correct
because{A2}K1 → {B2, D1, F1}K1, even if the sub-relationA2 < E1 is not true.
This latter relation will be penalized anyway because a split is necessary for matching
the graphs.

4.2 Temporal recall and precision

Our new metrics of temporal recall and precision rely on the notions defined above.
With respect to the recall value, we have shown it was important to distinguish “ma-
jor” relations,i.e. relations that belong to the minimal graph, from the other, “minor”
relations. That is why we suggest to compute recall in two steps. Precision is not
concerned by this issue.

4.2.1 Graph values

Thevaluev(G) of a graphG corresponds to the full number of relations. These rela-
tions can be provided by graph edges (relation value) or by merged nodes (node value,
corresponding to ‘=’ relations between endpoints):

v(G) = node value+ relation value (1)
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Figure 13: Split and merging operations betweenK1 andG1.

Relation value is the number of edges|R| (‘<’ relations), while node value corre-
sponds to the number of ‘=’ relations:

node value=
∑

ni∈L

|m(ni)| − 1 (2)

whereL is the set of nodes andm(ni) the number of points merged into a node (m
points into a node corresponds tom − 1 merges). Node value can also be computed
by:

node value= |EG| × 2 − |L| (3)

where|EG| is the number of events4.
In our example:

• v(K1min) = node value+ relation value= 6 + 2 = 8

• v(G1min) = 4 + 5 = 9

The number of correct answers in an evaluated graph, orcorrect valuevc, is the
number of correct ‘=’ and ‘<’ non-trivial relations. The number of correct ‘=’ is “node
value - merges”, the number of correct ‘<’ is “relation value- errors”.

vc(G) = (node value− merges) + (relation value− errors)

= v(G) − (merges+ errors) (4)

vc(G1min) = 9 − (2 + 2) = 5

4‘Events’ are the intervals (6 in the example and|EK1| × 2 = 12 is the number of points), nodes are
the actual vertices in the graph (points or sets of points: 6 in K1min). The node value is thus the number of
equality relations used to create sets of points.
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4.2.2 Temporal recall and precision

A precision value deals with errors (incorrect relations) and merges through the correct
valuevc. On the other hand, a recall value must take into account misses (key relations
missed by the graph) and splits.

• Major temporal recallRt(G) is the number of key major relations found byG∗.

R(G1) =
v(Kmin) − (misses + splits)

v(Kmin)
(5)

wheremisses is the number of relations inKmin missed byG∗ andsplits the
number of splits (a split is a missed ‘=’ relation).

In our example:Rt(G) = 8−(0+4)
8 = 0.5

• Minor temporal recallrt(G) is the proportion of key minor relations (K∗ −
Kmin) found byGmin. Minor relations are seeked in the minimal evaluated
graph. Indeed, as we already said, comparing two relations from non-minimal
graphs is redundant, since major relations that “produced”them have already
been taken into account.

In our example,rt(G1) = 2
8 = 0.25 (this corresponds to[C1; {A1, B1, E1}]

and[C2; (B2, D1, F1)]).

• Full temporal recallTR could be defined as a value pair(R(G), r(G)), or prefer-
ably as a combination:

TR(G) = Rt(G) +
1

v(Kmin)
rt(G) (6)

With this formula, we ensure that one single major relation is better than all
minor ones and that the recall can not exceed 1 (see next Section).

In our example:TR(G1) = (0.5, 0.25) or orTR(G1) = 0.5 + 0.25
8 = 0.53

• Temporal precisionTP (G) is simply the ratio between thecorrect valueof
Gmin, vc(Gmin), and its fullvaluev(Gmin).

TP (G) =
vc(Gmin)

v(Gmin)
(7)

In our example:TP (G1) = 5
9 = 0.56

4.2.3 Boundaries

Temporal precision. Temporal precision is a value between 0 and 1 sincevr(G) ≤
v(G) (errors and merges are zero or positive).
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TR(S3) = 3−(1+0)

3 + 0
3 = 0.67
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<
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3×3 = 0.77
(2 major and 2 minor relations)

< <
<

< <

Figure 14: Temporal recall of simple graphs, compared to keyK.

Temporal Recall. Major recall is between 0 and 1.

• If 1, then minor recallrt(G) = 0, because all relations inGmin are already in
Kmin (and then cannot be inK∗ − Kmin). In this case temporal recall cannot
exceed 1.

• If not 1,
Rt(G) ≤ (v(Kmin)− 1)/v(Kmin). Yet, 1

v(Kmin)rt(G) < 1
v(Kmin) , and the full

temporal recall stays below 1.

Then0 ≤ TR(G) ≤ 1.

4.2.4 Simple examples

Temporal recall and precision as described above lead to theexpected values for the
sample graphs pictured in Figure 5 and analysed in Section 2.4.

Figure 14 recalls these graphs and details the temporal recall values for each of
them (given thatv(Kmin) = 3). As for precision, for each graphSi, TP (Si) = 1.

5 Disjunctive convex relations

We now apply the metric to sets of convex relations. Convex relations are a set of
relations that areconceptual neighbors, that is they encode relations that may be vague
but in which intervals endpoints can only be in convex subsets of the timeline (see
Section 2.2).
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Rel. Repres.
A

B
A B

<
A B

<, = B A
<

B A
<, =

=
A

B

1 0 0.5
(“ 1

2
-split”)

0 0.5
(“ 1

2
-split”)

< A B
< 0 1 0.5

(disjunction)

0 0

≤ A B
<, = 0.5

(“ 1

2
-merge”)

0.5
(disjunction)

1 0 0.5
(disjunction)

> B A
< 0 0 0 1 0.5

(disjunction)

≥ B A
<, = 0.5

(“ 1

2
-merge”)

0 0.5
(disjunction)

0.5
(disjunction)

1

Table 3: Example weights for relaxed measures.

Building the minimal graph follows the same procedure as explained above (tran-
sitive reduction). The measures do not differ at all if we choose astrict scoring scheme
(see Section 2.3). But in arelaxedscheme, it becomes necessary to apply a weighting
scheme; a response is no longer assigned a binary value (0 or 1), but for example one
of the values in Table 3.

As shown in that table, the relaxed measure has an effect onmissesvalues and onvc

(a relation can get a half-point), but also on merge and splitvalues (where half-points
are also possible).

Consider a new keyK2 with convex relations (see also Figure 15):

A B C D E F
A s > ∨mi∨ < s <

oi∨fi∨ = ∨
f∨di∨si

B di∨si∨ m s m
oi∨mi∨ >

C < d∨s∨ <
o∨m
∨ <

D f s∨ = ∨si
E di∨

fi∨o

The characteristics of K2 are:

• 7 nodes for 6 events (5 equality relations)

• 2 relations:[C2 ≤ A2], [A2 < {B2, D1, F1}]

• K2∗ = [C2 ≤ A2], [A2 < {B2, D1, F1}], C1 < A2, C1 < {B2,D1,F1},
C1 < {E2,D2}, C1 < F2, C2 < {B2,D1,F1}, C2 < {E2,D2}, C2 < F2,
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D1

F1
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F2

<

C1
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<

Figure 15: Key with convex relations,K2min.

{A1,B1,E1} < F2, A2 < {E2,D2}, A2 < F2

• v(K2min) = (12 − 7) + 2 = 7.

Let us consider an evaluated graphG2 (Figure 16) which has:

• 10 nodes for 6 events (2 equality relations)

• 5 relations: [C1 ≤ D1], [D2 < C2], [C2 ≤ A2], [{A1, B1} ≤ E1], [A2 <
{B2, F1}]

• G2∗ = [C1 ≤ D1], [D2 < C2], [C2 ≤ A2], [{A1, B1} ≤ E1], [A2 <
{B2, F1}], [C1 < D2], [C1 < A2], [C1 < {B2,F1}], [C1 < F2], [D1 < C2],
[D1 < A2], [D1 < {B2,F1}], [D1 < F2], [D2 < A2], [D2 < {B2,F1}],
[D2 < F2], [C2 < {B2,F1}], [C2 < F2], [A2 < F2], [{A1,B1} < F2], [{A1,B1} < E2]

• v(G2min) = (12 − 10) + 5 = 7.

There is no merge and the number of splits is 2.5. The “half-split” comes from the
fact that E1 may be equal to{A1, B1}, because of the<,= edge.

G2min

C1 D1
<,=

D2
<

C2
<

A2

<,=

A1

B1

<

E1

<,=

B2

F1

<
F2

<

E2
<

Figure 16: Evaluated graph with convex relations,G2min.

The application of the same measures leads to the following values:

Rt(G2) =
7 − (0 + 2.5)

7
= 0.64
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rt(G2) = 0

TR(G2) = 0.64

vc(G2) = (12 + 2 ∗ 1/2) + 2 = 15

The two half-points invc(G2) hold for relationsC1 ≤ D1 (instead ofC1 < D1
in the key) andB1 ≤ E1 (instead ofB1 = E1 in the key).

As an example, and following Table 3, we can see thatE1 leaving the group
{A1, B1, E1} costs a half-point to the recall value, while relationB1 ≤ E1, cor-
rect but imprecise, gets a half-point of precision. Both results are logical behaviors of
the measure in our opinion.

6 Experiments

As stated in [21], a recall measure is expected to decrease ina linear way when the
amount of information decreases. This behavior can be evaluated by comparing a given
annotation with the same annotation where temporal information is taken out one piece
at a time.

6.1 Artificial graphs

First we perform an experiment on artifically built graphs. This experiment is per-
formed in the following way:

• For a given numberE of events, a temporal graph is built randomly. To be com-
parable to a graph built from a text, events are considered asintervals with some
uncertainty about their endpoints, giving rise to possiblydisjunctive relations be-
tween the generated events. This graph can contain any kind of convex (possibly
disjunctive) Allen relations. The graph is closed, leadingtoN = (E×(E−1))/2
relations.

• From this graph,R relations are randomly removed. Recall is expected to de-
crease in proportion to the number of removed relations. This operation is
achieved several times forR between1 andN 5.

• Figure 17 shows the different values of strict recall, generalized (relaxed) re-
call and our temporal recall (calledpoint recall) according to the proportion of
relations kept in the graph.

It is interesting to note that the curve based on the minimal graphs is almost linear,
while other measures increase faster, in a more parabolic way. Full graphs contain
redundant information, and recall increases then artificially. This is not the case when
considering minimal graphs, where redundancy has been removed. This is all the more
important as a corpus includes texts of various lengths and with a varying number of

5In Figure 17,E = 10, and 5 different graphs are built for each value ofR; this leads to a total number of
216 incomplete graphs. This is done for 10 full graphs; The figure is then a smooth curve made of averaged
points coming from 2160 different graphs.
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Figure 17: Behavior of recall measures according to the amount of temporal informa-
tion

events, in order to avoid to give too much weight to the longertexts, either in the
evaluation of the task or in training classifiers. We have forinstance also compared the
number of relations present in a minimal graph obtained by transitive reduction with
that of the temporal closure of the interval-based graph, with respect to the number of
events present in the text, on the whole TimeBank Corpus 1.1.It appears that minimal
graph grows roughly linearly as expected (the variance being due to variable multiple
branching when there is a lot of uncertainty), while the temporal closure is larger, much
more irregular, with greater variance when the number of events grows.

6.2 TimeBank corpus

We also did the same experiment on a sample of texts from TimeBank, with much more
irregular results (Figure 18) but the same phenomenon can beobserved (a linear de-
crease of point recall), with a larger unstability when almost all relations are removed.

TimeBank is a real ressource, but it is less controlled and homogenous than a set
of artificial graph, because human annotators make mistakes, forget relations, or intro-
duce inconsistencies. That is at least in part why we observea lot more noise in the
experimental results.

Finally, to estimate the behavior of precision measures, weslightly change the
above experiment by switching more and more relations to different ones, thus ‘disturb-
ing’ the initial graph, while trying to keep it consistent. Again we did this a number of
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Figure 18: Behavior of recall measures according to the amount of temporal informa-
tion (TimeBank)
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Figure 19: Behavior of recall measures according to the amount of temporal informa-
tion (TimeBank)

times, and averaged the results on points with similar rate of undisturbed relations. The
result, shown Figure 19, confirms that the point-based measure follows more closely
the ideal ‘y=x’ function, with again some unstability when the graph is very disturbed.

7 Conclusion

Comparing temporal constraints graphs is crucial in the task of extracting temporal
information from texts, both from an evaluation point of view and in the perspective
of incorporating global constraints in statistical learning procedures. We argue here
for comparison measures devoid of some of the biases inherent in the commonly used
comparisons of closures of Allen-based temporal graphs. The measure is defined on
the transitive reductions of the graph of (partially) ordered interval endpoints. Tran-
sitive reduction is conceptually intuitive, easy to compute and is unique in the cases
considered. We have shown empirically that the behavior of this kind of measures is
appropriate with the goals we had in mind.

We do not claim that ordering interval endpoints should be considered as annotation
provided by humans, only that the translation is possible and useful. It remains unclear
if this could also be an acceptable way of presenting temporal information to humans,
or how the resulting minimal graph could be meaningfully re-translated into interval-
based relations. We also plan to check our assumption that this procedure could be
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useful in the task of learning temporal constraints by integration of global constraints
(for instance as a good indication of how close are two temporal situations).
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