
XML Retrieval with a Natural Language Interface

Xavier Tannier1 and Shlomo Geva2

1 École Nationale Supérieure des Mines de Saint-Etienne, 158 Cours Fauriel,
F-42023 Saint-Etienne, France

tannier@emse.fr
2 Centre for Information Technology Innovation, Faculty of Information Technology,

Queensland University of Technology,
GPO Box 2434, Brisbane Q 4001, Australia

s.geva@qut.edu.au

Abstract. Effective information retrieval in XML documents requires
the user to have good knowledge of document structure and of some for-
mal query language. XML query languages like XPath and XQuery are
too complex to be considered for use by end users. We present an ap-
proach to XML query processing that supports the specification of both
textual and structural constraints in natural language. We implemented
a system that supports the evaluation of both formal XPath-like queries
and natural language XML queries. We present comparative test results
that were performed with the INEX 2004 topics and XML collection.
Our results quantify the trade-off in performance of natural language
XML queries vs formal queries with favourable results.

1 Introduction and Motivation

Applications of Natural Language Processing to Information Retrieval have been
extensively studied in the case of textual (flat) collections (see overviews [1, 2,
3, 4]). Among other techniques, linguistic analysis of queries was meant to bring
about decisive improvements in retrieval processes and in ergonomy. However,
only few linguistic methods, such as phrasal term extraction or some kinds of
query expansion, are now commonly used in information retrieval systems.

The rapidly growing spread of XML document collections brings new moti-
vating factors to the use of natural language techniques:

– Benefits that can be gained from the use of natural language queries are
probably much higher in XML retrieval than in traditional IR. In the later,
a query is generally a list of keywords which is quite easy to write. In XML
retrieval, such a list is not sufficient to specify queries on both content and
structure; for this reason, advanced structured query languages have been
devised.

XML is now widely used, particularly on the Internet, and that implies
that novice and casual users ought to be able to query any XML corpus. From
that perspective, two major difficulties arise, because we cannot expect such
users to:

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 29–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 X. Tannier and S. Geva

• learn a complex structured formal query language (a language with for-
malized semantics and grammar, as opposed to natural language);

• have full knowledge of the DTD and its semantics.
– In structured documents, a well-thought and semantically strong structure

formally marks up the meaning of the text; this can make easier query “un-
derstanding”, at least when this query refers (partly) to the structure.

– Finally, formal queries do not permit information retrival in heteregenous
collections (with different and unknown DTDs). A natural language interface
could resolve this problem, since users can express their information need
conceptually.

Note that these comments could be made about the database domain too,
and that the issues seem quite similar. Many natural language interfaces for
databases have been developed, most of them transforming natural language
into Structured Query Language (SQL) (see [5, 6, 7] for overviews). But the
problem is different for the following reasons:

– Unlike databases, XML format looks set to be used and accessed by the gen-
eral public, notably through the Internet. Although unambiguous, machine-
readable, structured and formal query languages are necessary to support
the retrieval process (in order to actually extract the answers), the need for
simpler interfaces will become more and more important in the future.

– Database querying is a strict interrogation; it is different to Information Re-
trieval. The user knows what kind of information is contained in the data-
base, her information need is precise, and the result she gets is either right
or wrong. This means that the natural language analysis must interpret the
query perfectly and unambiguously, failing which the final answer is incorrect
and the user disatisfied.

In XML IR, as well as in traditional IR, the information need is loosely
defined and often there is no perfect answer to a query. A natural language
interface is a part of the retrieval process, and thus it can interpret some
queries imperfectly, and still return useful results. The problem is then made
“easier” to solve. . .

2 INEX, NLPX Track and NEXI

2.1 INEX

The Initiative for Evaluation of XML Retrieval, INEX [8], provides a test col-
lection consisting of over 500 Mbytes of XML documents, topics and relevance
assessments. The document set is made up of 12,107 articles of the IEEE Com-
puter Society’s publications. Topics are divided into two categories:

– Content-and-Structure (CAS) queries, which contain structural constraints.
e.g.: Find paragraphs or figure-captions containing the definition of Godel,
Lukasiewicz or other fuzzy-logic implications. (Topic 127)

XML Retrieval with a Natural Language Interface 31

– Content-Only (CO) queries that ignore the document structure.
e.g.: Any type of coding algorithm for text and index compression. (Topic 162)

This article focuses on CAS topics. Figure 1 shows an example of CAS topic.
The description element is a natural language (English) description of the
user’s information need; The title is a faithful translation of this need into a
formal XPath-like language called Narrowed Extended XPath I (NEXI) [9]. The
narrative part is a more detailed explanation of the information need.

<inex_topic topic_id=”130” query_type=”CAS”>

<title>
//article[about(.//p,object
database)]//p[about(.,version management)]

</title>
<description>

We are searching paragraphs dealing with version management
in articles containing a paragraph about object databases.

</description>
<narrative>

The elements to be considered relevant are . . .
</narrative>
<keywords>object database version management</keywords>

</inex_topic>

Fig. 1. An example of CAS topic

The participants in the ad-hoc INEX task use only NEXI titles in order
to retrieve relevant elements. We adapted our system so that it takes the topic
description (natural language expression depicting the same query) as input, and
returns a well-formed NEXI title. Going through this pivot language presents
many advantages: it allows the use of an existing NEXI search engine in the
retrieval process. Furthermore a user can still specify her query in this formal
language if she prefers to. Finally, we can evaluate the translation by comparing
the translated queries with the original hand-crafted NEXI titles. On the other
hand, the transformation to a pre-existing restrictive language may result in loss
of information.

2.2 NEXI

NEXI CAS queries have the form //A[B]//C[D] where A and C are paths
and B and D are filters. We can read this query as “Return C descendants of A
where A is about B and C is about D”. B and D correspond to disjunctions or
conjunctions of ’about’ clauses about(//E, F), where E is a path and F a list
of terms. The ’title’ part of Fig. 1 gives a good example of a query formulated
in NEXI. More information about NEXI can be found in [9].

32 X. Tannier and S. Geva

3 Description of Our Approach

Requests are analysed through several steps:

1. A part-of-speech (POS) tagging is performed on the query. Each word is
labeled by its word class (e.g.: noun, verb, adjective. . .).

2. A POS-dependant semantic representation is attributed to each word. For
example the noun ’information’ will be represented by the predicate infor-
mation(x), or the verb ’identify’ by evt(e1, identify).

3. Context-free syntactic rules describe the most current grammatical construc-
tions in queries and questions. Low-level semantic actions are combined with
each syntactic rule. Two examples of such operations, applied to the descrip-
tion of topic 130 (Fig. 1), are given in Fig. 2. The final result is a logical

e x y

evt(e, search)
paragraph(x)
databases(y)
about(x, y)

object(e, x)
VP → VERB NP

e

evt(e, search)
VERB

searching

a b x y

paragraph(x)
databases(y)
about(a, b)

a = x
b = y

=

x y

paragraph(x)
databases(y)
about(x, y)

NP → NOUN PREP NOUN

x

paragraph(x)
NOUN

paragraph

a b

about(a, b)
PREP
about

y

databases(y)
NOUN

databases

Fig. 2. Example of rule application for the verbal phrase “searching paragraphs about
databases” (rules NP → NOUN PREP NOUN and VP → VERB NP). Basic semantic
representations are attributed to part-of-speeches (leaf components). When applying
syntactic rules, components are merged and semantic actions are added (here identity
relations and verbal relation predicate – bold predicates).

XML Retrieval with a Natural Language Interface 33

representation shown in the left part of Fig. 3. This representation is totally
independant from the queried corpus, it is obtained by general linguistic
operations.

4. The semantic representation is then reduced with the help of specific rules:
– a recognition of some typical constructions of a query (e.g.: Retrieve +

object) or of the corpus (e.g.: “an article written by [. . .]” refers to the
tag au – author);

– and a distinction between semantic elements mapping on the structure
and, respectively, mapping on the content;

This part is the only one that uses corpus-specific information, among which
the DTD, a dictionary of specific tag name synonyms (e.g.: paper=article),
some simple ontologic structures (“a article citing somebody” refers to bibli-
ography in INEX collection). Figure 3 shows the specific rules that apply to
the example.

5. A treatment of relations existing between different elements;
6. The construction of a well-formed NEXI query.

Steps 1 to 5 are explained in more details in [10], as well as necessary corpus
knowledge and the effect of topic complexity on the analysis.

Initial representation Rules Result

a b c d e f g e1 e2 e3

evt(e1, search)
paragraph(a)
object(e1, a)
evt(e2, deal)
version(b)
management(c)
agent(e2, a)
with(e2, c)
noun_modifier(c, b)
article(d)
evt(e3, contain)
paragraph(e)
object(f)
databases(g)
agent(e3, d)
object(e3, e)
about(e, g)
noun_modifier(g, f)

����������������������������������
���������������������������������

e1 a

evt(e1, search)
object(e1, a)

⇒
a

e2 a c

evt(e2, deal)
agent(e2, a)
with(e2, c)

⇒
a c

about(a, c)

e3 d e

evt(e3, contain)
agent(e3, d)
object(e3, e)

⇒
d e

contains(d, e)

paragraph ⇒ p
article ⇒ article

����������������������������������
���������������������������������

a b c d e f g

p(a)
article(d)
p(e)

contains(d, e)
about(a, c)
about(e, g)

version(b)
management(c)
object(f)
databases(g)

noun_modifier(c, b)
noun_modifier(g, f)

Fig. 3. The semantic analysis of topic 130 (left), is reduced by some generic rules
(center), leading to a new representation (right). Bold predicates emphasize words
representing XML tag names and the framed letter stands for the element that should
be returned to the user. The first three rules deal with verbal phrases “to search sth”,
“to deal with sth” and “to contain sth”.

34 X. Tannier and S. Geva

The representation obtained at the end of step 5 does not depend on any
retrieval system or query language. It could be transformed (with more or less
information loss) into any existing formal language.

3.1 Getting to NEXI

Transformation process from our representation to NEXI is not straightforward.
Remember that a NEXI query has the form //A[B]//C[D].

– At structural level, a set of several tag identifiers (that can be DTD tag
names or wildcards) has to be distributed into parts A, B, C and D, that
we respectively call support requests, support elements, return requests and
return elements.

– At content level, linguistic features (like noun_modifier in the example)
cannot be kept and must be transformed in an appropriate manner.

Structural Level. These four parts A, B, C and D are built from our repre-
sentation (Fig. 3) in the following way:

– C is the ’framed’ (selected) element name (see Fig. 3 and its caption);
– D is composed of all C children (relation contains) and their textual content

(relation about);
– A is the highest element name in the DTD tree, that is not C or one of its

children;
– B is composed of all other elements and their textual content.

Wildcard-identified tags of the same part are merged and are considered to
be the same element. See an example in Sect. 4.

Table 1. Examples of linguistic features and of their NEXI equivalents

Predicate Initial text Representation NEXI content
noun_property “definition of a

theorem”
definition(a)
theorem(b)
noun_property(a, b, of)

“defition of theorem”

noun_modifier “version
management”

version(a)
management(b)
noun_modifier(b,)

“version management”

adjective “digital library” digital(a)
library(b)
adjective(b, a)

“digital library”

disjunction “definition of Godel
or Lukasiewicz”

definition(a)
noun_property(a, b, of)
b = c ∨ d
Godel(c)
Lukasiewicz(d)

“definition of Godel de-
finition of Lukasiewicz”

XML Retrieval with a Natural Language Interface 35

Content Level. The main linguistic predicates generated by our system are
np_property, noun_modifier, adjective and disjunction or conjunction rela-
tions. NEXI format requires ’about’ clauses to contain only textual content. In
most cases we chose to reflect as far as possible the initial text, because the
search engine can deal with noun phrases. In the case of disjunctions and con-
junctions, for the same reason, we built separated noun phrases. Examples of
each operation are given in Tab. 1.

The transformation of the semantic representation of Fig. 3 results in:

//article[(about(.//p, object databases))]//p[(about(.,
version management))]

4 Example

We give here a significant example, with the analysis of topic 127 (INEX 2004).
Several syntactic parsings could be possible for the same sentence. In practice
a “score” is attributed to each rule release, depending on several parameters
(among which distance between words that are linked, length of phrases, type of
relations. . . Unfortunately we lack space to explain more precisely this process).
In our sample topic only the best scored result is given.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c10 c11 c12 c13

1. event(c1, find)
2. object(c1, c2)
3. c2 = c3 ∨ c4
4. paragraph(c3)
5. figure(c5)
6. caption(c4)
7. rel_noun_modifier(c4, c5)
8. event(c6, contain)
9. agent(c6, c2)
10. object(c6, c7)
11. definition(c7)
12. rel_np_relation(c7, c8, of)
13. c8 = c9 ∨ c10, c10 = c11 ∨ c12
14. c9 = Godel, c11 = Lukasiewicz
15. ’fuzzy-logic’(c13)
16. implication(c12)
17. rel_noun_modifier(c12, c13)
18. rel_adjective(c12, other)

reduction−−−−−−→
rules

c3 c4 c5 c6 c8 c9 c10 c11
c12 c13

p(c3)
fgc(c4)

about(c2, c7)

c2 = c3 ∨ c4
definition(c7)
c8 = c9 ∨ c10, c10 = c11 ∨ c12
c9 = Godel, c11 = Lukasiewicz
’fuzzy-logic’(c13)
implication(c12)

rel_np_relation(c7, c8, of)
rel_noun_modifier(c12, c13)
rel_adjective(c12, other)

//article//(p|fgc)[(about(., “definition of Godel” “definition of
Lukasiewicz” “definition of fuzzy-logic implications”))]

Fig. 4. Semantic representations of topic 127, and automatic conversion into NEXI

36 X. Tannier and S. Geva

(127) Find paragraphs or figure captions containing the definition of Godel, Lukasiewicz
or other fuzzy-logic implications.

Figure 4 shows the three major steps of the analysis of topic 127. The left
frame represents the result of step 3 (see Sect. 3). Some IR- and corpus-specific
reduction rules are then applied and lead to right frame: terms paragraph and
figure-captions are recognized as tag names p and fgc (lines 4 to 7); the con-
struction “c2 contains c7” is changed into about(c2, c7) (lines 8 to 11). The
other relations are kept.

Translation into NEXI is performed as explained above, disjunctions c8 and
c10 result in the repetition of the term “definition” with preposition “of ” and
three distinct terms.

5 Processing NEXI Queries

5.1 XML File Inversion

In our scheme each term in an XML document is identified by three elements: its
filename, its absolute XPath context, and its ordinal position within the XPath
context. An inverted list for a given term is depicted in Tab. 2.

Table 2. Inverted file

Document XPath Position
e1303.xml article[1]/bdy[1]/sec[6]/p[6] 23
e1303.xml article[1]/bdy[1]/sec[7]/p[1] 12
e2404.xml article[1]/bdy[1]/sec[2]/p[1]/ref[1] 1
f4576.xml article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1] 3
f4576.xml article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1] 2
g5742.xml article[1]/fm[1]/abs[1] 7

Fig. 5. Schema for XML Inverted File

XML Retrieval with a Natural Language Interface 37

In principle at least, a single table can hold the entire cross reference list
(our inverted file). Suitable indexing of terms can support fast retrieval of term
inverted lists. However, it is evident that there is extreme redundancy in the
specification of partial absolute XPath expressions (substrings). There is also
extreme redundancy in full absolute XPath expressions where multiple terms
in the same document share the same leaf context (e.g. all terms in a para-
graph). Furthermore, many XPath leaf contexts exist in almost every document
(e.g. /article[1]/fm[1]/abs[1] in INEX collection). For these reasons we chose to
normalize the inverted list table to reduce redundancy.

The structure of the database used to store the inverted lists is depicted in
Fig. 5. It consists of four tables. The Terms table is the starting point of a query
on a given term. The Term_Stem column holds the Porter stem of the original
term. The List_Position is a foreign key from the Terms table into the List
Table. It identifies the starting position in the inverted list for the corresponding
term. The List_Length is the number of list entries corresponding to that term.
The List table is (transparently) sorted by Term so that the inverted list for
any given term is contiguous.

5.2 Ranking Scheme

Elements are ranked according to a relevance judgment score. Leaf and branch
elements need to be treated differently. Data usually occur at leaf elements, and
thus, our inverted list mostly stores information about leaf elements. A leaf ele-
ment is considered candidate for retrieval if it contains at least one query term. A
branch node is candidate if it contains a relevant child element. Once an element
(either leaf or branch) is deemed to be a candidate for retrieval its relevancy
judgment score is calculated. A heuristically derived formula (Equation (1)) is
used to calculate the relevance judgment score of leaf elements. The same equa-
tion is used for both return and support elements. The score is determined from
query terms contained in the element. It penalises elements with frequently oc-
curring query terms (frequent in the collection), and it rewards elements with
evenly distributed query term frequencies within the elements.

L = Kn−1
n∑

i=1

ti
fi

(1)

Here n is the number of unique query terms contained within the leaf element,
K is a small integer (we used K = 5). The term Kn−1 scales up the score of
elements having multiple distinct query terms. We experimented with K = 3
to 10 with little difference in results. The sum is over all terms where ti is the
frequency of the ith query term in the leaf element and fi is the frequency of
the ith query term in the collection. This sum rewards the repeat occurrence of
query terms, but uncommon terms contribute more than common terms.

Once the relevance judgment scores of leaf elements have been calculated,
they can be used to calculate the relevance judgment score of branch elements.
A naïve solution would be to just sum the relevance judgment score of each

38 X. Tannier and S. Geva

branch relevant children. However, this would ultimately result in root elements
accumulating at the top of the ranked list, a scenario that offers no advantage
over document-level retrieval. Therefore, the relevance judgment score of children
elements should be somehow decreased while being propagated up the XML tree.

A heuristically derived formula (Equation (2)) is used to calculate the scores
of intermediate branch elements:

R = D(n)
n∑

i=1

Li (2)

Where:
– n = the number of children elements
– D(n) = 0.49 if n = 1

0.99 otherwise
– Li = the ith return child element

The value of the decay factor D depends on the number of relevant children
that the branch has. If the branch has one relevant child then the decay constant
is 0.49. A branch with only one relevant child will be ranked lower than its child.
If the branch has multiple relevant children the decay factor is 0.99. A branch
with many relevant children will be ranked higher than its descendants. Thus, a
section with a single relevant paragraph would be judged less relevant than the
paragraph itself, but a section with several relevant paragraphs will be ranked
higher than any of the paragraphs.

Having computed scores for all result and support elements, the scores of
support elements are added to the scores of the corresponding result elements
that they support. For instance, consider the query:

//A[about(.//B,C)]//X[about(.//Y,Z)]
The score of a support element //A//B will be added to all result elements

//A//X//Y where the element A is the ancestor of both X and Y.
Finally, structural constraints are only loosely interpreted. Elements are col-

lected regardless of the structural stipulations of the topic. Ancestors or descen-
dants of Y may be returned, depending on their score and final rank.

More information about this system can be found in [11].

6 Results

We tested our system using the INEX 2004 collection (set of topics and evalua-
tion metrics). Recall/precision graphs have been calculated by the official INEX
evaluation program. In the following we call Sadhoc the system using official,
hand-crafted NEXI titles. SNLP is the same system, but using natural language
queries, automatically translated into NEXI.

Sadhoc is ranked 1st from 52 submitted runs in the task, with an average
precision of 0.13. SNLP is ranked 5th with an average precision of 0.10, and 1st

among the systems using natural language queries.

XML Retrieval with a Natural Language Interface 39

The Recall/Precision curves are presented in Fig. 6. The top bold dashed
curve represents results for Sadhoc, the lower bold one is SNLP curve, and the
other curves are all the official runs submitted at INEX 2004.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

S_adhoc
S_NLP

Fig. 6. INEX’04 VCAS Recall/Precision curve averaged over all topics and all metrics

The precision loss caused by the natural language interface is limited. SNLP

looses only four ranks with this interface, and still outperforms most of ad-hoc
systems. We think that this trade-off is very interesting; indeed, as we pointed
out in the introduction, the benefits brought by a natural language interface
compensate for the precision loss, at least for non-expert users1.

7 Conclusion

In this paper we presented an XML retrieval system that allows the user to ex-
press a query over an XML collection, using both structural and content retrieval
cues, in natural English expression. An NLP module analyses this expression syn-
tactically and semantically, applies some specific rules and translates the result
into a formal query language. This intermediate language is then processed by
a backend system.

This system had been tested with INEX 2004 collection, topics, and rele-
vance assessments and with good results. This study shows that natural lan-
guage queries over XML collections can offer promising prospects for deploying
in general public applications.
1 We can note that before an online NEXI parser became available for INEX topic

developers, the majority of submitted topics were not well formed (depicting the
wrong meaning) and/or syntactically incorrect. However INEX participants are XML
retrieval professionals that have at least a good knowledge of XPath and NEXI. The
task would have been much more difficult for casual users.

40 X. Tannier and S. Geva

References

[1] Smeaton, A.F.: Information Retrieval: Still Butting Heads with Natural Language
Processing? In Pazienza, M., ed.: Information Extraction – A Multidisciplinary
Approach to an Emerging Information Technology. Volume 1299 of Lecture Notes
in Computer Science. Springer-Verlag (1997) 115–138

[2] Smeaton, A.F.: Using NLP or NLP Resources for Information Retrieval Tasks.
[12] 99–111

[3] Arampatzis, A., van der Weide, T., Koster, C., van Bommel, P.: Linguistically-
motivated Information Retrieval. In Kent, A., ed.: Encyclopedia of Library and
Information Science. Volume 69. Marcel Dekker, Inc., New York, Basel (2000)
201–222

[4] Sparck Jones, K.: What is the role of NLP in text retrieval? [12] 1–24
[5] Androutsopoulos, I., G.D.Ritchie, P.Thanisch: Natural Language Interfaces to

Databases – An Introduction. Journal of Natural Language Engineering 1 (1995)
29–81

[6] A.Copestake, Jones, K.S.: Natural Language Interfaces to Databases. The Knowl-
edge Engineering Review 5 (1990) 225–249

[7] Perrault, C., Grosz, B.: Natural Language Interfaces. Exploring Articial Intelli-
gence (1988) 133–172

[8] Fuhr, N., Lalmas, M., Malik, S., Szlàvik, Z., eds.: Advances in XML Information
Retrieval. Third Workshop of the Initiative for the Evaluation of XML retrieval
(INEX). Volume 3493 of Lecture Notes in Computer Science., Schloss Dagstuhl,
Germany, Springer-Verlag (2005)

[9] Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). [8]
[10] Tannier, X., Girardot, J.J., Mathieu, M.: Analysing Natural Language Queries at

INEX 2004. [8] 395–409
[11] Geva, S.: GPX - Gardens Point XML Information Retrieval at INEX 2004. [8]
[12] Strzalkowski, T., ed.: Natural Language Information Retrieval. Kluwer Academic

Publisher, Dordrecht, NL (1999)

	Introduction and Motivation
	INEX, NLPX Track and NEXI
	INEX
	NEXI

	Description of Our Approach
	Getting to NEXI

	Example
	Processing NEXI Queries
	XML File Inversion
	Ranking Scheme

	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

