
Natural Language Queries for Information Retrieval
in Structured Documents

Xavier Tannier, Jean-Jacques Girardot and Mihaela Mathieu
École Nationale Supérieure des Mines

de Saint-Etienne
158 Cours Fauriel

F-42023 Saint-Étienne cedex 2
Email: tannier@emse.fr, girardot@emse.fr, mathieu@emse.fr

Abstract— Information Retrieval in structured documents (and
particularly XML) requires the user to have a good knowledge
of the document structure and of some query language. This
article discusses the advantages that could be brought by a system
allowing natural language queries, and presents a technique to
translate such requests into a formal query language.

I. INTRODUCTION

Information Retrieval applied to documents available
through the Web has provided virtually every human being
the ability to find information from the very large information
set constituted by search engines like Google or AllTheWeb.
These engines index different document formats (text, html,
etc.) which share the characteristic of being flat1: they consti-
tute pure data, and do not embed any structure semantic
information. An information request consists of a few words,
and a document is considered relevant if it contains these
words.

However, a new standard has now emerged, eXtensible
Markup Language (XML [1]), which is more and more widely
used to store and exchange information. XML files offer the
particularity to provide both information and structure, since
information is embedded into tags that structure it. XML
therefore offers the possibility to give a rich structure to a
document so that each word may have different semantics
depending on the structure element which contains it.

This article discusses the benefits that can be gained from
using some natural language processing techniques and the
specificities of structured documents, in order to retrieve some
information from an XML corpus. It also presents a technique
of natural language query analysis that relies on the structure
of the documents to “understand” the semantics of the request,
and discusses further thoughts that need to be given in order
to improve this kind of work.

II. XML AND XML RETRIEVAL

XML is a text-based markup language where data is iden-
tified by nested elements enclosed in start tags and end tags
that give information about the semantics or the form of the
text (figure 1).

1Even when the document is structured (html), these systems index the
textual content and do not offer the possibility to query about the structure
of the document.

<article title=”>
<title>
Natural Language Queries for IR...

</title>
<introduction>
<bold>Information Retrieval</bold>

applied to documents available through the
<italics>Web</italics> ...
</introduction>
<chapter n=”1”>
...

</chapter>
...
</article>

Fig. 1. example XML document

XML documents may be split into two categories:
• The document-centric documents where the markup gives

the logical structure but where text is primordial (e.g.:
books or articles)

• The data-centric documents, mainly used for machine
consumption, where markup and text are indissociable
(e.g.: flight schedules, on-line catalogues)

Information Retrieval (IR) in XML documents is quite inte-
resting because we can separate structure and content seman-
tically; if a user knows some information about the structure
semantics, she can use it and so mix content and structure in
her query. She can also ask for specific parts of the document,
something that usually cannot be done for flat documents. For
now, current search engines can index XML documents, but
do not take into account the structures of these documents;
therefore, the unique possibilities for powerful queries on
structures are lost.

Although XML is recent, its usage is steadily growing, and
many query languages, such as Lorel [2], XQL [3], XML-
QL, XML-GL [4], Quilt [5], XQuery [6], and even XSLT [7],
have already been devised for XML documents. However, the
semantics of these query languages are quite complex, and
their use is much more complicated than writing requests



for flat documents, or even SQL requests. The use of such
languages is limited to persons who have a good knowledge
of their features.

In opposition to relational databases designed for a pro-
fessional use with predictable and repetitive queries, XML
collections are used and will be used more and more often
by large groups of users who have unpredictable and complex
needs of information, and who do not know how to use
sophisticated query languages.

III. HOW CAN NATURAL LANGUAGE PROCESSING HELP?

The field of Natural Language Processing (NLP) has been
extensively studied in the context of Information Retrieval
over textual (flat) collections (for overviews on this subject,
see [8]–[13]). Linguistic analysis of the corpus and/or the
query seem to be able to carry out decisive improvements
in the retrieval process, but the actual results are not yet up to
those expectations [13], [14].

However we think that the spread of XML corpora can bring
new hopes for at least two reasons:
• The benefit we can gain from using natural language

is much higher in XML retrieval than in traditional IR.
While in the last case a flat keyword-based query is quite
easy to write, in XML retrieval we are confronted with
two major difficulties:

– we cannot expect casual users to learn complex and
fast changing query languages like XQuery;

– these languages also require the user to have a full
knowledge of the corpus structure and of the tag
names (the DTD2).

Although these languages are necessary at some steps
of the retrieval process (in order to actually extract the
answers), we need more simple interfaces.

• To perform a really effective natural language-based re-
trieval in a flat text, we should “understand” the semantic
of this text, which is not feasible yet. In the case of
structured documents, we consider that a well-thought
and semantically strong structure, because it formally
marks up the meaning of the text, can make easier the
query “understanding”, at least when this query refers
(partly) to the structure.

IV. DESCRIPTION OF OUR APPROACH

Our aim is two-fold:
• First, from a natural language query, to generate a query

in a formal structured (XQuery-like) query language3.
• Then, from this formal query, to perform a “usual”

retrieval process to get answers from the corpus.
This paper focuses on the first stage, which constitutes the
most innovative part of our work.

2The Document Type Definition (DTD) is a document defining the tags that
can be used in the XML file as well as their structure (imbrication, number,
sequences, etc.). A similar purpose is also achieved by the newer XSchemas,
which use a more complex syntax than DTDs and are currently less used.

3In the whole paper we will call a formal query language a language with
formalized semantics and grammar, as opposed to natural language.

To achieve this goal, the steps to be performed are:
• a part-of-speech tagging of the query (IV-A);
• a syntactic/semantic analysis of the query (IV-B);
• with the help of specific rules (IV-C):

– a recognition of some typical constructions of a
query (e.g.: Retrieve + object) or of the corpus (e.g.:
“an article written by [. . . ]” refers to the tag author
if it exists);

– and a distinction between the semantical elements
mapping on the structure and, respectively, mapping
on the content;

• a treatment of relations existing between different ele-
ments recognized at last stage (IV-D);

• the construction of a formal language query (IV-E).

A. Part-of-speech tagging

A part-of-speech (POS), or word class, is the role played
by a word in the sentence (e.g.: noun, verb, adjective. . . ).
POS tagging is the process of marking up the words in a text
with their corresponding roles. To carry out this task we chose
the free tool TreeTagger [15]. For example, for the following
query:

(1) Find the title of articles that deal with semantics
. . . the output of TreeTagger is given in figure 24.

Find VERB(IMP) find
the DET the
title NOUN title
of PREP of
articles NOUN(PLUR) article
that REL_PRO that
deal VERB deal
with PREP with
semantics NOUN semantics

Fig. 2. POS tagging of sentence (1) with TreeTagger4. Find is an imperative
verb, of and with are prepositions and that is a relative pronoun

B. Syntactic/semantic analysis

This analysis is performed with a set of rules describing the
grammatical constructions that are the most current in queries
and questions. These rules are said context-free: they define
which sequence of elements (on the right side) is needed to
compose a single new element (on the left side). The whole set
of rules is a context-free grammar (CFG). As an example, we
listed in figure 3 the rules that will be triggered when parsing
our sample query (1).

A recursive application of these CFG rules results in the
syntactic tree represented in figure 45.

4For a clearer comprehension by a non-expert reader, we changed the names
of the tags into less complete but more explicit abbreviations.

5Note that with this set of rules two different parsing are possible: the
relative proposition can be attached to the noun “article” (as shown in the
figure) or to the noun “title”. In practice both trees are explored.



NP → DET? NOUN
NP → NP PREP NP
NP → NP REL_PROP
REL_PROP → REL_PRO VP
VP → VERB PREP? NP
S → VERB(IMP) NP

Fig. 3. Examples of CFG rules, with S = Sentence, NP = Noun Phrase,
REL_PROP = relative proposition, VP = Verbal Phrase. The question
mark “?” means that the element is optional in the sequence.

S

VERB(IMP)
find

NP

NP

DET
the

NOUN
title

PREP
of

NP

NP

NOUN
article

REL_PROP

REL_PRO
that

VP

VERB
deal

PREP
with

NP

NOUN
semantics

Fig. 4. Syntactic tree of sentence (1), obtained with rules of figure 3

This operation gives us a syntactic structure, but we need
some semantics to have an idea about the relations existing
between the words. In that aim, we use a very simple imple-
mentation of Discourse Representation Theory (DRT) [16]. In
DRT, the semantic representation of a discourse (or a part
of discourse) is described with a two-level “box” called “Dis-
course Representation Structure” (DRS). The upper level gives
the discourse referents, which are the elements introduced
by the discourse; the lower level represents the conditions
concerning the referents.

Figure 5 shows a typical example of DRS.

e x y z

Napoléon(x)
battle(y)
Austerlitz(z)
event(e, win)
agent(e, x)
object(e, y)
location(y, z)

Fig. 5. Semantic representation in DRT of the sentence:
“Napoleon wins a battle in Austerlitz”

In this example, the terms “Napoléon”, “Austerlitz”, “bat-

tle” and the verb “to win” (event e) are discourse referents,
represented by letters in the upper level and described by
logical predicates in the lower level. The other conditions
are about the agent and object of the event (respectively
“Napoléon” and “battle” for the event “to win”) and the
location of the battle.

One can note that the semantics of some predicates can
differ from a domain to another. If the location is here
understood as a geographic feature, in an XML context it
would probably be a structural constraint (in the document).
Again a task-specific choice has to be made in order to model
constructions that are peculiar to XML retrieval.

To compute a DRS representing a whole sentence, we
attribute a basic DRS to each word, depending on its class
(POS). Let us come back to our running example of sen-
tence (1). Figure 6 contains three examples of POS DRSs for
a noun, a verb and a preposition.

The syntactic rules are enriched with semantic actions. In
our example, with the rule

VP → VERB PREP? NP,

applied to the DRSs of figure 6, we add the following identity
conditions: e1 = e2 and x = y. The result is the semantic tree
of figure 7.

x

semantics(x)

e1

event(e1, deal)

e2 y

with(e2, y)

noun “semantics” verb“deal” preposition “with”

Fig. 6. examples of word DRSs

e1 e2 x y

semantics(x)
event(e1, deal)
with(e2, y)
e1 = e2

x = y

=

e1 x

semantics(x)
event(e1, deal)
with(e1, x)

VP

e1

event(e1, deal)

VERB deal

e2 y

with(e2, y)

PREP with

x

semantics(x)

NOUN semantics

Fig. 7. example of DRS for the verbal phrase “deal with semantics”

Due to a lack of place we cannot show the semantic tree
obtained for the whole example. The figure 8 gives the final
DRS. Note that a referent has been added, which is implicit
in the sentence: the interlocutor to which we give an order
when using a verb in the imperative mood (here, “find. . . ”).



x y z s e1 e2

event(e1, find)
event(e2, deal)
title(x)
article(y)
semantics(z)
interlocutor(s)
agent(e1, s)
object(e1, x)
of(x, y)
agent(e2, y)
with(e2, z)

Fig. 8. DRS for sentence (1)

N.B.: The set of syntactic/semantic rules that we use is made
up of about 50 rules and is obviously not intended to describe
the whole language. The stress has been put on noun phrases,
that are often much more meaningful than verbal phrases (at
least in terms of Information Retrieval). Relative propositions,
prepositional phrases are also very important because they
mark a structure of query that we do not want to miss. For
complex demands, an entire parsing is often impossible. In
that case only the noun phrases are analyzed and the verbs
are left out.

The DRS that is obtained at this stage cannot be used to
build a formal query yet. Some IR-specific rules have to be
set up.

C. Specific rules

The semantic construction can be reduced by taking some
special cases into account, among which:

1) The “query verbs” like “to want”, “to find”. . . With
the help of a dictionary describing the semantic relation
between those verbs and the queries, we set a particular
flag on the concerned element. This flag means that this
element should be selected as a good response to the
query, as shown in the following example.
(2) I want an article.

s x e

speaker(s)
article(x)
event(e, want)
agent(e, s)
object(e, x)

⇒
x

article(x)

Here we know that the verb “to want” means that
its object (“article”) has to be selected, and this new
information is represented by a framed referent. The

agents of such verbs (here the speaker, or “I”), as well
as the verbs themselves, are then left out.

2) The description verbs like “to deal with”, “to con-
cern”. . . An other dictionary allows to add a new relation
called about:
(3) an article that deals with semantics.

x y e

article(x)
semantics(y)
event(e, deal)
with(e, y)

⇒

x y

article(x)
semantics(y)
about(x, y)

The verb referent is removed as well in this case.
3) The verbs of topological relation like “to contain”, “to

include”. . . If such a verb has an agent and an object,
then an appropriate relation is set up between those two
elements and the verb is deleted:
(4) a play that contains a scene. . .

x y e

play(x)
scene(y)
event(e, contain)
agent(e, x)
object(e, y)
. . .

⇒

x y

play(x)
scene(y)
contains(x, y)
. . .

4) The words or phrases in quotation marks6 are con-
sidered as non-separable expressions and are grouped
together in a single variable.
(5) I am looking for the “To be or not to be” scene in

Hamlet.
5) And above all, a term recognized as a DTD-tag (or

synonym) is changed into this tag name and is marked
as such (here by a bold predicate in the DRS, with ttl
standing for “title” and art for “article”).
(6) the title of an article. . .

x y

title(x)
article(y)
of(x, y)

⇒

x y

ttl(x)
art(y)
of(x, y)

A dictionary of synonyms is used. This dictionary is ab-
solutely not intended to be general, but corpus-specific;
indeed the DTD tag names are rarely real words, but
abbreviations instead (art for article, st for section title,
p or par for paragraph, etc.).

Figure 9 shows the application of some of these specific
rules on our sample DRS. Let us remind the initial request:

(1) Find the title of articles that deal with semantics

6These phrases in quotation marks are detected after the morpho-syntactic
analysis by a specific post-process.



We suppose that our dictionary tells us that the words “title”
and “article” respectively stand for the tag names ttl and art.

x y z s e1 e2

event(e1, find)
event(e2, deal)
title(x)
article(y)
semantics(z)
interlocutor(s)
agent(e1, s)
object(e1, x)
of(x, y)
agent(e2, y)
with(e2, z)

⇒

x y z

ttl(x)
art(y)
semantics(z)
of(x, y)
about(y, z)

Fig. 9. DRS for sentence (1) before and after application of specific rules. Let
us remind that we are looking for “a title of article that deals with semantics”.
The referent x is selected (rule 1), the article y is about “semantics” (rule 2)
and the terms “article” and “title” is recognized as tag identifiers ttl and art
(rule 5).

In the new DRS, we can clearly distinguish a tag name,
which is related to the structure of the document (in bold
type), from what we will now call a term, as “semantics”,
which is supposed to be a part of the textual contents of the
document.

D. Structure analysis

At this stage we still have some binary relations between
referents that have not been treated by any specific rule (in
figure 9 the relation of(x, y)). These relations have all a
particular meaning, and a system cannot have the knowledge
of each of these meanings. We implemented a semantic
representation of some important relations (and particularly
“temporal” relations – after, included, etc., that should be
understood here as order constraints in the XML file).

Let R(x, y) be a binary relation between referents x and y.
To handle “known” relations as well as “unknown” ones, we
apply a heuristic according to the following cases:

1) x and y refer to two tag names (representing structural
elements):

a) if the relation R is known, no action is needed.

e.g.: A paragraph after a figure:

x y

par(x)
fig(y)
after(x, y)

b) if the relation R is unknown, the fact that a relation
exists is in itself an information: the structure given
by the DTD allows then to guess which relation(s)
it can be. In our example the DTD will tell us that
an element ttl (title x) is contained by an element
art (article y).

e.g.: A title of article:
x y

ttl(x)
art(y)
of(x, y)

DTD−−−−−→
analysis

x y

ttl(x)
art(y)
contains(y, x)

2) The relation links a tag (let us say x) and a term (y):
a) if R is known, we add a tag with any name

(called ’*’) that contains y, and the relation is
transfered to this new tag:

e.g.: A paragraph before the conclusion 7:

x y

par(x)
conclusion(y)
before(x, y)

−→

x y z

par(x)
conclusion(y)
*(z)
contains(z, y)
before(x, z)

The paragraph should be written in the XML file
before a tag that contains the word “conclusion”.

b) if R is unknown, our first experiments show that
a treatment produces more noise than useful infor-
mation. The relation is suppressed8.

e.g.: A short article:
x y

art(x)
short(y)
rel_adjective(x, y)

remove−−−−−→

x y

art(x)
short(y)

N.B.: This example shows that a deep semantic
knowledge could be helpful. A description of what
is considered to be a short article would allow
to get more appropriate answers. But this kind
of knowledge is very hard to model because of
the number and the subjectivity of the relations
involved.

3) R holds between two terms (term is here used as op-
posed to DTD tag names): in that case the relation does
not apply to the structure, as x and y refer to content
elements. We do not have any particular treatment to do,
but the relation can be a useful linguistic information
that we keep for the retrieval process (which can use it
or not).

e.g.: A cruise on the Danube:

x y

cruise(x)
Danube(y)
on(x, y)

7We suppose in this example that the word “conclusion” cannot be
assimilated to a tag name.

8Here the referent y does not have any more relation with other elements
and becomes useless, but it could be different.



If the search engine is able to handle such relations, it
is useful to know that the whole phrase “cruise on the
Danube” is preferable to the separate words “cruise”
and “Danube”.

In our running example only the rule 1b applies and our
final DRS is shown in figure 10.

x y z

ttl(x)
art(y)
semantics(z)
contains(x, y)
about(y, z)

Fig. 10. final DRS for sentence (1).

E. Formal language query

At the end of the linguistic phase, our aim is to obtain a
formal language query that could easily be translated into an
existing XQuery-like language. From those languages (and ini-
tially from SQL) we take the idea of clause pattern (SELECT-
FROM-WHERE in SQL) for restructuring the request. We
chose the following four-clause pattern:
• the from clause contains the tag names and indications

about the tag path (XPath [17] expression);
• in the select clause we find the elements that are to

be returned to the user; those elements must be refered
in the from clause.

• the where clause contains the relations between tags or
variables (e.g.: before(x, y), about(a, b))

• the variables are identifiers replacing terms in the
other clauses;

The transformation process from DRS to formal language
is straightforward: the tag names are already flagged (in bold
type in our representation), as well as the selected elements
(framed referents in the DRS). The variables are the unary
predicates that are not tag names, and the where clause
corresponds to the other conditions.

The figure 11 shows a SQL-like formal representation that
we can obtain from the DRS of figure 10.

FROM /art y,
y/ttl x,

WHERE about(y, z)
VARIABLES z = “semantics”
SELECT x

Fig. 11. Example of formal query obtained from DRS 10 (query (1)). y is
an art tag (article), x is a ttl tag (title) contained in y, and z is a variable
representing the term “semantics”.

V. COMMENTS AND FURTHER WORK

A. About the retrieval process

At this stage we have a formal query that can be translated
into an existing and implemented language such as XQuery.
But while doing that we should keep in mind that when we use
XQuery9, we are not doing Information Retrieval, but rather
some kind of database exploration. The differences are the
following:
• In our example the about relation obtained from query (1)

has no defined semantics or certainly no equivalent in
XQuery; in order to translate it we could only require
the word “semantics” to be present in the text, which is
obviously not enough.

• As the request is a natural language query, the from
clause should not necessarily be considered as strict
paths. If the user says “give me a paragraph about
semantics”, a section or a figure can also be relevant
(maybe not even less relevant).

• XQuery gives us a boolean result without indication about
its level of relevance. In IR we like to be able to rank the
retrieved documents in relevance order.

For these reasons we think that a real IR-oriented search
engine, rather than an XQuery processor, should be “plugged”
there.

B. Corpus knowledge

During the stages that we detailed in the previous sections,
we used several kinds of information about the explored
corpus. This knowledge has to be modeled for each new set of
documents10 to study, and therefore prevents the spread of such
a technique to arbitrary kinds of XML documents; this is why
we tried to reduce this necessity to the minimum. But despite
this, we think that the following points are the minimum
knowledge to know in order to perform an appropriate query
analysis:
• The Document Type Definition (DTD) that gives the com-

mon structure of the documents. To have this definition
is the sine qua non condition; indeed a good part of
the process relies on the description of the documents
structure.

• In the (frequent) case where the DTD tag names are not
“real” words (see section IV-C), we also need a dictionary
giving the DTD semantics, because we consider that the
user does not have a deep knowledge of the DTD.

• Eventually a dictionary of acceptable synonyms for the
tag names (e.g.: paper = article = document, etc.);

• Semantic locutions (e.g.: “a list of keywords” = “key-
words”), in order to avoid a noise generated by an
erroneous detection of terms (here, list is neither a tag
name nor a term to look for in the text);

9When we use the term “XQuery” it should be understood as “XQuery-like
query languages”.

10We call a new set of documents a corpus with a different DTD and
different subject.



• Some very simple ontologic structures (e.g.: “a novel
written by Marcel Proust” = “a novel of which the author
is Marcel Proust” – if we suppose that novel and author
represent tag names);

Obviously, the more knowledge we have about the corpus,
the best the query analysis can be. For example an ontology
of the domain treated by each document could also help. But
the points we enumerated describe a knowledge that we think
is hard to avoid.

We think that it is necessary to give further thoughts to the
problem of the antagonism between re-usability of a technique
on the one hand, and corpus- or domain-dependant knowledge
used on the other hand. The work around Semantic Web [18]
tends to the idea of providing a common framework to define
data structure and meaning, and moves towards a complete
and precise semantic description of the document.

If some knowledge modelling seems inescapable, the fact
is that a real development of XML retrieval depends on how
easy the installation of a system in a new context is. It seems
that the good balance does not only depend on the different
kinds of knowledge we consider as necessary, but also on the
way we model this knowledge and on the corpus category
(document- or data- centric).

VI. CONCLUSION

Natural language querying in XML corpora should con-
tribute to the expansion of structured document engineering,
by allowing any non-expert user to search some information
in these documents, which are more and more numerous in
companies and on the Internet. A lot of work has to be done to
achieve this goal. In this article, we have described a technique
to translate a natural language request into a formal language
query, with the help of information about the structure of the
documents described in the DTD.

REFERENCES

[1] “Extensible Markup Language (XML). World Wide Web Consortium
(W3C) Recommandation,” http://www.w3.org/TR/REC-xml/.

[2] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore:
A Database Management System for Semistructured Data,” SIGMOD
Record, vol. 26, no. 3, pp. 54–66, Sept. 1997.

[3] J. Robie, J. Lapp, and D. Schach, “XML Query Language (XQL),”
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[4] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca,
“XML-GL: a Graphical Language for Querying and Restructuring XML
Documents,” in Proceedings of the 8th International WWW Conference,
WWW8. Toronto, Canada: International World Wide Web Conference
Committee (IW3C2), May 1999.

[5] D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML Query
Language for Heterogeneous Data Sources,” in Proceedings of WebDB
2000 Conference, ser. Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[6] “XQuery 1.0: An XML Query Language. World Wide Web Consortium
(W3C) Working Draft,” http://www.w3.org/TR/xpath.

[7] “XSL Transformation (XSL). World Wide Web Consortium (W3C)
Recommandation,” http://www.w3.org/TR/xslt/.

[8] A. F. Smeaton, “Information Retrieval: Still Butting Heads with Natural
Language Processing?” in Information Extraction – A Multidisciplinary
Approach to an Emerging Information Technology, ser. Lecture Notes in
Computer Science, M. Pazienza, Ed. Springer-Verlag, 1997, vol. 1299,
pp. 115–138.

[9] S. Feldman, “NLP Meets the Jabberwocky: Natural Language
Processing in Information Retrieval,” Online, May 1999,
http://www.onlinemag.net/OL1999/feldman5.html.

[10] A. F. Smeaton, “Using NLP or NLP Resources for Information Retrieval
Tasks,” in Natural Language Information Retrieval, T. Strzalkowski, Ed.
Dordrecht, NL: Kluwer Academic Publisher, 1999, pp. 99–111.

[11] A. Arampatzis, T. van der Weide, C. Koster, and P. van Bommel,
“Linguistically-motivated Information Retrieval,” in Encyclopedia of
Library and Information Science, A. Kent, Ed. New York, Basel: Marcel
Dekker, Inc., Dec. 2000, vol. 69, pp. 201–222.

[12] C. Jacquemin and P. Zweigenbaum, “Traitement automatique des
langues pour l’accès au contenu des documents,” in Le document en
sciences du traitement de l’information, T. Cepadues, Ed. Jacques Le
Maître, Jean Charles et Catherine Garbay, 2000, ch. 4, pp. 71–109.

[13] K. S. Jones, “What is the role of NLP in text retrieval?” in Natural
Language Information Retrieval, T. Strzalkowski, Ed. Dordrecht, NL:
Kluwer Academic Publisher, 1999, pp. 1–24.

[14] T. Strzalkowski, “Preface,” in Natural Language Information Retrieval,
T. Strzalkowski, Ed. Dordrecht, NL: Kluwer Academic Publisher, 1999,
pp. xiii–xxiii.

[15] H. Schmid, “Probabilistic Part-of-Speech Tagging Using Decision
Trees,” in International Conference on New Methods in Language
Processing, Sept. 1994.

[16] H. Kamp and U. Reyle, From discourse to logic. Kluwer Academic
Publisher, 1993.

[17] “XML Path Language (XPath). World Wide Web Consortium (W3C)
Recommandation,” http://www.w3.org/TR/xpath.

[18] “Semantic Web. World Wide Web Consortium (W3C).”
http://www.w3.org/2001/sw/.

[19] T. Strzalkowski, Ed., Natural Language Information Retrieval. Dor-
drecht, NL: Kluwer Academic Publisher, 1999.


