

Finding Salient Dates for Building Thematic Timelines

Rémy Kessler ¹

Xavier Tannier 1, 2

Caroline Hagège ³

Véronique Moriceau 1, 2

André Bittar³

¹ Univ. Paris-Sud, France

² LIMSI-CNRS, France

³ Xerox Research Centre Europe, France

Context

- Our ultimate goal: build automatic timelines from a query
 - "Tunisian revolution"
 - "Michael Jackson"
 - "Wikileaks"
 - "accidents in Chinese mines"
 - etc.

2010, Dec. 17: Mohamed Bouazizi sets himself alight to protest harassment and unemployment

2010, Dec. 24: Protests break out in Sidi Bouzid and spread to Menzel Bouzaiene,
Kairouan, Sfax, Ben Guerdane, Sousse.

2010, Dec. 27: The protests spread to Tunis, the nation's capital

2011, Jan. 14: President Ben Ali flees to Saudi Arabia

Context

 Systems aiming at building timelines mainly see the problem as a traditional (multi-)document summarization

Use of textual information (bag-of-words)

See Retrospective Event

Detection,

New Event Detection (TDT)

and

others

- Use only little temporal information
 - Document creation time (DCT)
 - Rarely, absolute, full dates (day + month + year → 10th of July, 2012)

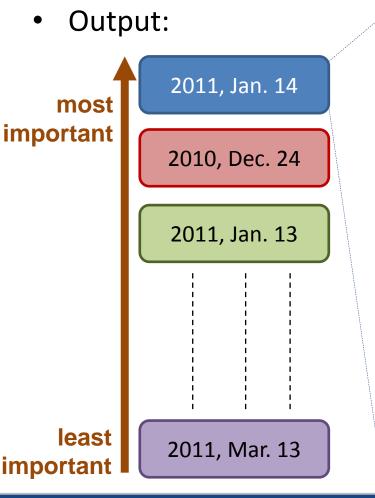
However, temporal information is crucial in timelines!

Our objectives

- Our ultimate goal: find important events from a query
- Our intermediate goal (presented here): use temporal information to find important dates

(Our assumption: important dates will lead to important events)

- Our system:
 - Extracts a maximum of temporal information from texts
 - Uses this information to extract salient dates
 - Textual content is used only for the initial thematic document retrieval (wrt a query)


2011, Mar. 22

2011, Jun. 12

2010, Dec. 04

Our objectives

• Input: "Tunisian revolution" from: 2010 to: now

Egypt's president Hosni Mubarak, who resigned on Friday, and *Tunisian president Zine El Abidine Ben Ali,* who departed on January 14, both bowed to unprecedented waves of popular protests.

The comments came after a Tunisian revolt which ended the 23 year old rule of *Ben Ali, who fled Tunisia for Saudi Arabia last Friday*.

Ben Ali signed his resignation on Friday after a wave of protests sparked by the suicide of a 26-year-old university graduate who was prevented by police from selling fruit and vegetables to make a living.

Resources

Corpus

- AFP (French news agency)
- 1.3 million texts in English,
 2004-2011
- 511 documents/day (Lot of redundancy)
- 426 millions words
- XML file
 - Title
 - Document Creation Time (DCT)
 - Keywords
 - Textual content

```
<NewsML>
<DateId>20110117T125527Z</pateId>
 <HeadLine>Mauritanian sets himself on
fire in govt protest: witness</HeadLine>
 <body.content>
   A Mauritanian set himself on fire in
an anti-government protest Monday,
witnesses said, [...] 
   Yacoub Ould Dahoud, 42, stopped
his car in front of the Senate [...] 
 </body.content>
</NewsML>
```

Reference "Chronologies"

- Textual event timelines
- Specific articles written by journalists in order to contextualize events.

```
<NewsML>
 <DateId>20110114T142534Z
 <HeadLine>Timeline of Tunisian revolution
                                                 Our aim:
 <body.content>
                                        given a query,
  President Ben Ali fled Friday to Saudi A
                                        produce a list of dates
led to [...
                                        where the dates of these
      DECEMBER</p
    p> - 17 - 
                                        reference chronologies
    Mohamed Bouaziz sets himself alight
                                        are top ranked
unen loyment
```

Building Timelines

To extract salient dates, we need:

- 1. To get as many temporal information as possible
- 2. To define date salience:
 - a) As a pure redundancy of information
 - b) With linguistic filtering
 - c) With other features (and with machine learning)

To extract salient dates, we need

"As many temporal information as possible"

(temporal and linguistic processing)

XIP

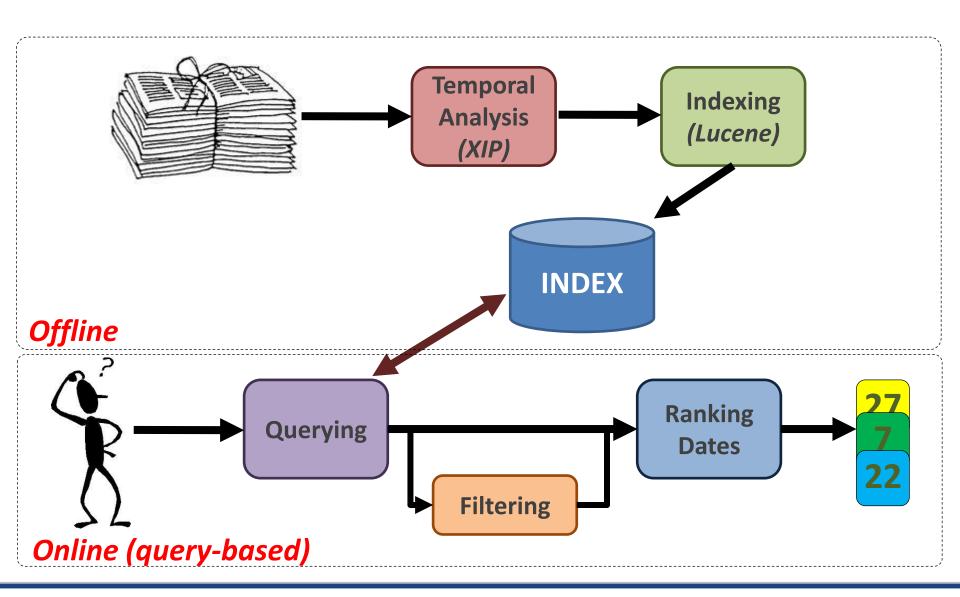
- XIP is a syntactic parser implemented at Xerox Research Centre Europe
- Deep grammatical dependency analysis
- Temporal expression recognition

XIP, temporal analysis

Precision-oriented date normalization

- Absolute dates
 - "January 5th, 2008"
 - 7% of the dates in the corpus (845,000)
- DCT-related dates
 - "last Friday" or "on Friday" (use verb tense) → July 6th, 2012
 - 40% of the dates in the corpus (4.6 millions)
- No anaphoric dates ("the previous Friday")

Modality and Reported Speech information


- Temporal expressions linked to:
 - Future verbs
 - Modal verbs
 - Declaration verbs
 - Reported Speech

Building Timelines

To extract salient dates, we need:

- 1. To get as many temporal information as possible
- 2. To define date salience:
 - a) As a pure redundancy of information
 - b) With linguistic filtering
 - c) With other features (and with machine learning)

Architecture

Building Timelines

To extract salient dates, we need:

- 1. To get as many temporal information as possible
- 2. To define date salience:
 - a) As a pure redundancy of information
 - b) With linguistic filtering
 - c) With other features (and with machine learning)

To extract salient dates, we need to

"Define date salience as a pure redundancy of information"

(temporal and linguistic processing)

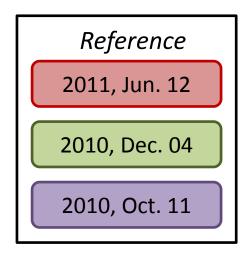
Document retrieval and date scoring

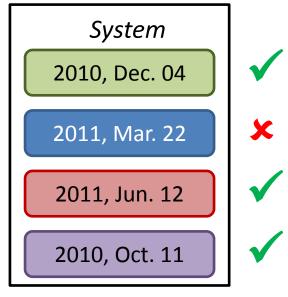
Document retrieval

- Indexing and search using Lucene at sentence-level
- Given a query, retrieve top 10,000 sentences

Date scoring

An adaptation of classical *tf.idf* for dates:


$$tf.idf(d) = f(d).\log(\frac{N}{df(d)})$$


With

- f(d) the number of occurrences of date d in the 10,000 sentences
- *N* the number of indexed sentences
- df(d) the number of sentences containing d in the entire corpus

Evaluation

- What do we evaluate?
 - Are dates from reference chronologies on the top of our ranked list of dates?
 - (but the reference is subjective, we'll talk about this later)
 - No evaluation on associated text
- How do we evaluate?
 - Mean Average Precision (MAP)
 - On **91** manual chronologies from AFP corpus

Baselines

1. BL_{DCT}

- Top 10,000 sentences
- Only DCTs are considered
- Dates are ranked by their tf.idf(d)

2. $\mathsf{BL}_{\mathsf{abs}}$

- Top 10,000 sentences
- Only absolute dates are considered
- Dates are ranked by their tf.idf(d)

3. BL_{mix}

- Absolute dates are considered
- DCT when no absolute date in the sentence

Baseline Results

Baseline "only DCT"		
Model	BL _{DCT}	
MAP score	0.5523	
Baseline "only absolute dates"		
Model	BL_{abs}	
MAP score	0.2778	
Baseline "mixed"		
Model	BL _{mix}	
MAP score	0.4135	

Using XIP date normalization

1. SD

- All absolute and normalized relative dates are considered
- Dates are ranked by their tf.idf(d)

Salient Dates Results

Salient date run with all dates	
SD	0.6982

Building Timelines

To extract salient dates, we need:

- 1. To get as many temporal information as possible
- 2. To define date salience:
 - a) As a pure redundancy of information
 - b) With linguistic filtering
 - c) With other features (and with machine learning)

Using XIP date normalization and filtering

1. SD

- All absolute and normalized relative dates are considered
- Dates are ranked by their tf.idf(d)

$2. SD_X$

- Modality, future verbs and reported speech indicate that the event might not be factual
- Filtering these events is intended to reduce noise
- Filtering is achieved by removing dates associated with:
 - A reported speech verb (X = R)
 - A modal verb (X = M)
 - A future verb (X = F)
 - A declaration verb (X = D)
- Filters can be combined

Salient Dates Results

Salient date runs with all dates		
SD	0.6982	
Salient date runs with filtering		
SD _R	0.6996	
SD _F	0.6993 **	
SD _M	0.7005 *	
SD _D	0.7091 **	
SD _{FMD}	0.7091 **	
SD _{RFMD}	0.7146 **	

* : significant, p < 0.05

** : highly significant, p < 0.01

wrt SD run

Building Timelines

To extract salient dates, we need:

- 1. To get as many temporal information as possible
- 2. To define date salience:
 - a) As a pure redundancy of information
 - b) With linguistic filtering
 - c) With other features (and with machine learning)

To extract salient dates, we need to

"Define date salience with other features"

(machine learning)

Learning salience: features

1. The more a date is mentioned, the more important it is

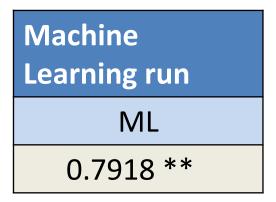
- Sum of Lucene scores for all sentences containing the date
- Number of sentences containing the date
- **–** ...

2. An important event is still written about, a long time after it occurs

- Distance (in days) between the date and the most recent mention of this date
- Distance between the date and the DCT of the article where it appears

3. Other features

- Lucene's best ranking of the date
- Number of times where the date is absolute in the texts
- **—** ...


Learning date salience

- Classification between salient dates and non-salient dates
 - Dates in AFP chronologies are salient, all others are not (but the reference is subjective, we'll talk about very soon)
 - Used IcsiBoost, implementation of adaptative boosting (Freund and Shapire, 1997)
- Our aim is not to classify dates, but to rank them.
- We therefore used the **predicted probability** P(d) of being salient, returned by the classifier
- P(d) is mixed with values tfidf(d):

$$score(d) = P(d) \times tfidf(d)$$

Machine Learning Results

Cross-validation on the 91 chronologies

** : highly significant, p << 0.01 wrt SD runs

Conclusion

Result Discussion

- 1. Using simple frequency counting and normalization improves baseline by far (MAP \approx 0.7)
- Adding linguistic filtering for reducing noise leads to a significant improvement (MAP + 0.02 at best)
- 3. Adding features and machine learning is even much better $(MAP \approx 0.8)$

Result Discussion

- Salient dates are not timelines, work still needs to be done there
 - Finding central/representative sentence(s) within the set of sentences associated to a date
 - Using clustering techniques inside these sentences
 - Adding little semantic analysis for determining the importance of events
 - Mixing summarization techniques with salient dates extraction (any people interested?)

Perspectives

- Evaluation of timelines is a big issue
 - 1. Lack of references
 - Need good experts in many domains
 - 2. Problem of definition of the "important event"
 - Otherwise the task is too subjective
 - Difficult to define "guidelines"
- We have answer to problem 1.
 - Reference chronologies, in English, French and Arabic, with new ones every week
 - Made by journalists that have no idea of what we do
 - With the corresponding corpus
 - But still very subjective
- Interested into making timelines over this corpus?
 - The corpus is NOT free (AFP) but this CAN be discussed.

Thanks!

(This work has been partially funded under ANR project Chronolines)