

Nicolas Paris, MSc.^{1,2,3}, Michael Mendis⁴, Christel Daniel, MD, Ph.D^{1,3}, Shawn Murphy, MD, Ph.D⁴, Xavier Tannier, Ph.D^{3,5} and Pierre Zweigenbaum, Ph.D²

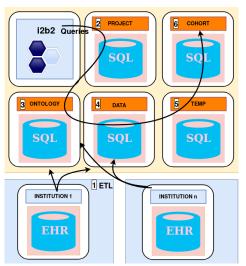
S43: Research Informatics Infrastructure

i2b2 implemented over SMART-on-FHIR

¹WIND-DSI, AP-HP, Paris, France; ²LIMSI, CNRS, Université Paris-Saclay, Orsay, France; ³INSERM, UMR_S 1<mark>142</mark>, LIMICS, Paris, France; ⁴Partners Healthcare In., Boston, MA, USA; ⁵Sorbonne Universités, UPMC Univ Paris 06, France

Cohort Discovery

- Subsetting patients based on eligibility criteria
- Key step in medical research
- ► Observational studies & Clinical trials
- ► At national or international scale
- ightarrow Fast & Precise cohort discovery is crucial


Cohort Discovery Tools

- ▶ i2b2 is leader in cohort discovery
- ► Federating i2b2 instances (Shrine, Insite, TrinetX...)
- Analytic tools extend i2b2 (transmart) to handle genomic
- ► Altogether provides a 360° view of patients and hospitals
- About 200 implementations worldwide
- ightarrow Large scale cohort discovery needs i2b2 democratisation

i2b2 Architecture

The star schema:

- ► Cohort selection is fast
- Adapts to local needs
- Simple to load

The ontology design:

- Stores any terminology
- Represents information easily
- Customizable, extensible concepts
- ightarrow Flexible, Efficient, Simple.

Improving i2b2

Data Veracity Challenge

- ► ETL complexity may affect data consistency
- ▶ ETL latency compromizes data currency

Data Variety Challenge

- Data variety needs technology variety (text, time series, imaging...)
- Ontology variety needs terminology mapping

Data Volume Challenge

- ► Duplicating big-data = big-data x 2
- Analyzing big-data needs specilalized technologies

Fast Healthcare Interoperability Resources

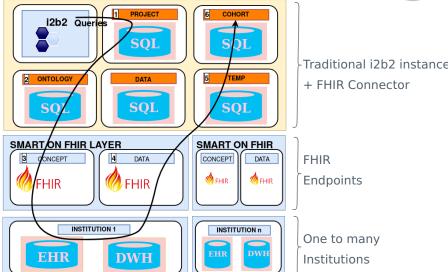
HL7 FHIR

- ► FHIR is an Agile and RESTful Approach to Healthcare Information Exchange
- ▶ FHIR covers most patient & healthcare-related concepts
- ► FHIR specifies both a Search & a Terminology Mapping API
- Open-Source community massively adopts FHIR
- ightharpoonup pprox 50 SMART-on-FHIR apps !

Bridging i2b2 & FHIR

Related work:

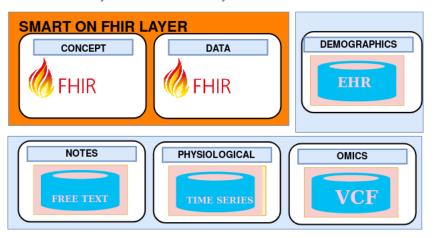
- Mobile phone pushing data into i2b2 ¹
- ▶ i2b2 as a FHIR endpoint ²
- ► SMART-on-FHIR applications running on top of i2b2 ³
- → Present work = an i2b2 connector to FHIR endpoints


 $^{^{1}}$ Pfiffner et al. "C3-PRO: Connecting researchkit to the health system using i2b2 and FHIR". Mar 2016.

²Boussadi et al. "FHIR layer implemented over i2b2", Dec 2017

³Wagholikar et al. "SMART-on-FHIR implemented over i2b2", Jun 2016

Overall i2b2-FHIR Architecture



FHIR Endpoint Implementation

▶ data variety ↔ database variety

Data Search

- Build on the FHIR Search Specifications
- ▶ GET

<FHIR-API>/<Resource>?elements=<elements>&code=<code>
&date=gt<date inf>&date=lt<date sup>&<custom filter>

► RETURNS

Patient Set:

```
{ "resourceType": "Patient", "id": "8989" }
```

Encounter Set:

```
[ "resourceType": "Encounter", "id": "100100", "patient": { "
    reference": "Patient/001"} }
```

Temporal Set:

Connector Configuration

One YAML configuration file per endpoint

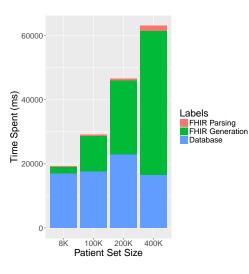
```
version: dstu3
Patient:
    patientUriPath: $.resource.id
    patientUriField: id

Observation:
    patientUriPath: $.resource.subject.reference
    encounterUriPath: $.resource.context.reference
    instanceUriPath: $.resource.id
    datePath: $.resource.effectiveDateTime
    patientUriField: subject
    encounterUriField: context
    instanceUriField: id
    dateField: effective
```

► Institutions can use FHIR Extensions

Concept Mapping

- Takes advantage of FHIR standard Concept Mapping
- ► GET


 <FHIR-API>/ConceptMap

 ?source-code=<code>system:in=<code-system>
- ► RETURNS

Filters Equivalent codes

Benchmarks

5B physiological table

- Bottleneck = json generation
- Linear performances
- ▶ Under the minute

Results

Data Veracity Challenge

- ► ETL are not mandatory anymore
- ► Some queries can be real-time

Data Variety Challenge

- ▶ Concept Mapping ↔ standard terminologies
- Dedicated DBs can exploit heterogeneous data types
- Multiple center can be queryied together

Data Volume Challenge

- Query data in place without duplication
- ► Allows big-data handling

Discussion

Limitations:

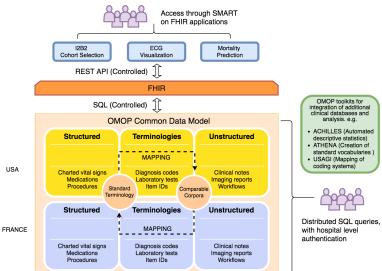
- ► EHR vendors not all FHIR compliants
- Concept mapping remains to be done
- ► FHIR has no asynchronous mode

Perspectives:

- ► FHIR GraphQL & Bulk Export would improve
- Multiple FHIR endpoint implementation
- Oauth 2.0 securisation implementation
- ▶ Release as a SMART-on-FHIR app

Conclusion

This work opens new areas:


- ▶ Discover cohort over countries
- Explore new data types

Future directions:

- Semi-Automatic Concept Mapping methodology
- ► Create FHIR-OMOP connectors

Overall Project

