
Creation, Visualization and Edition of Timelines for Journalistic Use

Xavier Tannier
LIMSI, CNRS, Univ. Paris-Sud,

Université Paris-Saclay
F-91405 Orsay, FRANCE

xavier.tannier@limsi.fr

Frédéric Vernier
LIMSI, CNRS, Univ. Paris-Sud,

Université Paris-Saclay
F-91405 Orsay, FRANCE

frederic.vernier@limsi.fr

Abstract
We describe in this article a system for building
and visualizing thematic timelines automatically.
The input of the system is a set of keywords,
together with temporal user-specified boundaries.
The output is a timeline graph showing at the
same time the chronology and the importance of
the events concerning the query. This requires
natural language processing and information re-
trieval techniques, allied to a very specific tem-
poral smoothing and visualization approach. The
result can be edited so that the journalist always
has the final say on what is finally displayed to the
reader.

1 Introduction
Timelines are a natural way to describe series of related
events in a compact manner, and journalists use them a lot.
However, writing and maintaining such timelines, as well as
building a comprehensive visualization, requires a consider-
able amount of human effort.

For this reason, automatic timeline summarization (TS)
has known a wide interest in the last past years. TS is gen-
erally seen as a special case of multi-document summariza-
tion. For that matter, multi-document summarization sys-
tems have been used to generate timelines, and focus on the
selection of the most representative sentences in an already
time-stamped corpus [Yan et al., 2011; Chieu and Lee, 2004;
Tran et al., 2015b]. Some previous work have focused on
extracting salient dates before selecting the description of
events corresponding to these dates [Tran et al., 2013; 2015a;
Kessler et al., 2012; Nguyen et al., 2014].

The final output of these systems is generally made of the
k top ranked events, presented in chronological order. The
visualization can then be obtained with traditional librairies
such as TimelineJS, SIMILE, TimeGlider, vis.js (see Fig-
ure 1). The information concerning the rank and the weight
of the events is only used for selecting the top k, and is then
lost.

We argue that readable timelines (or chronologies) should
present first an overview with the most important events, but
also let the reader discover intermediate events at will. A
timeline must certainly be followed along a temporal axis,

but a feedback of the importance of the events should also be
displayed.

In this paper, we follow [Nguyen et al., 2014] and describe
a system taking a set of keywords as an input, producing an
output that is not a constrained summary or list of events, but
a weighted list of dates, together with a description of the
event that occurred at each date. We first focus on how the ar-
ticles are processed in order to rank the dates, and especially
on how the events are time-stamped. We show that consider-
ing only the article publication date does lead to shifted peaks,
and then to irrelevant timelines. For this reason, we use a
temporal normalization of texts to adjust the peaks. Then, we
choose the best article headline related to the date and topic,
as an event description.

Finally, we present a visualization tool specially dedicated
to this system, where all the extracted events in the considered
time span can be shown, and where the importance of the
events is symbolized by a time-series graph filtered through
event-specific smoothing functionalities.

The system is demonstrated on French data1.

2 System
The first step of our approach can be seen as a task of “date
extraction”. Our system extracts a maximum of temporal
information and uses only this information to detect salient
dates for the construction of event timelines. Then, textual
content is used for selecting the description of each event. Fi-
nally, an original data visualization is proposed.

2.1 Event Extraction
Figure 2 shows the general architecture of the system:

¬ The system Heideltime [Strötgen and Gertz, 2013;
Moriceau and Tannier, 2014] is used to normalize tem-
poral expressions in the texts. Absolute (e.g. “Jan-
uary 6, 2016”) and relative dates (e.g. “on Friday”) are
turned into a YYYY-MM-DD common format (see exam-
ples in Figure 3). This allows us to link event to specific
dates, instead of relying on the document creation time.

 The corpus is indexed by the Solr search engine2, where
one document per sentence is created, considering only

1This work has been partly founded by a Google award for com-
putational journalism.

2http://lucene.apache.org/solr/



Figure 1: An existing, manually produced timeline on the French presidential race (TimelineJS).

Figure 2: System overview.

sentences containing a normalized date. Each sentence
is indexed together with the dates and the title of its ar-
ticle, using stemming.

® At query time, documents are retrieved from the index,
without any number limit.

¯ Dates are extracted from the documents and weighted
according to the number of occurrences of the date in
the retrieved documents. Thus we obtain a plot where
each peak corresponds to an “important” date. This is
why considering dates inside the text instead of the doc-
ument creation time is important: using document cre-
ation time gives us a measure of the mediatic response
to events, making the peaks match with the days after
the events. Retiming the events w.r.t. the dates specified
in the text allows to reposition the peaks in front of the
actual date of the events (see an illustration at Figure 4).

° We then need to associate a textual description to each
event. This is done by collecting the more important
words for each date with a classical tf.idf:

tf.idf(w, d) = tf(w, d) log
N

df(w)

where tf(w, d) is the frequency of word w in all sen-
tences containing the date d, df(w) is the frequency of

At least 129 people died after a series of violent incidents
around Paris, France, on Friday 13 November 2015.
The attacks in Paris on the night of Friday 13 November left
130 people dead and hundreds wounded.
At least 128 people were killed in shootings and explosions
in Paris late Friday
Attacks such as the one in Paris three days ago cannot oblit-
erate our desire to understand

Figure 3: Examples of sentences refering to November 13
events with absolute or relative dates. The normalized is
“2015-11-13” for all the sentences.

word w in the entire corpus, and N is the total num-
ber of documents in the corpus. For each date d, the
20 words having the highest weight are used to query
the Solr index again and to select the top article pub-
lished at this date d. The description of the day event is
then the headline and a picture (if any) of this article.

± Visualization is described at next Section.

2.2 Visualization Tool
Figure 5 shows an example of graph produced by the sys-
tem. On top, the most relevant events are presented (headline
and picture from the selected article for the specific day). At
bottom, the graph is displayed along the same temporal axis.
The graph represents the weights of each day as calculated
at step ¯. However, like all measures representing a human
activity, these weights lead to a very noisy graph. We provide
then a smoothing function to make the graph more readable
to the user. A traditional Gaussian blur can be added and con-
troled to obtain a smoother curve, but it also shifts the maxima
to the right. Therefore, it would lose the temporal signature
of the burst and decoy model (Descending Triangle Rever-
sal [Hochheiser and Shneiderman, 2001]). In consequence,
we added another smoothing functionality based on Bilateral
Filtering [Paris and Durand, 2008] to preserve the disconti-
nuity at event burst. However it does not match our burst
and decoy model since days just before a burst are raised by
the following days if decoy happens into the kernel size. We
refined then the Bilateral Filtering by accounting only past
events in the smoothing function. This function is then:



Figure 5: Visualization for the query “attentats” (“attacks”) in 2015.

Figure 4: Raw graphs on query “attacks” in November and
Decembre 2015, with time weights given by the document
creation time (left) or by the temporal normalization (right).
November 13 is represented by the red vertical line.

w′(d) =

∑0
i=−2ρ w(d+ i)× e

−i2

ρ2 × e−
(w(d)−w(d+i))2

σ2∑0
i=−2ρ e

−i2
ρ2 × e−

(w(d)−w(d+i))2

σ2

where w(d) is the initial weight as described in previous
section, d is the considered day, ρ an integer parameter and
σ a real parameter. ρ and σ represent the extension of the
neighborhood (ρ2 is the variance of the Gaussian function)
and can be modified by the user through sliders, for more or
less smoothing. Default values are ρ = 2 and σ = 0.1. It
produces the nicely readable graph of Figure 5 instead of the
ones circled in the same Figure.

Even if a smoothing is necessary, we still aim at obtaining
strong and sharp peaks when important events occur. Instead
of using a pure burst model as in Kleinberg [2002] or Zhu
and Shasha [2003], which have already been applied to media
content [Xie et al., 2013; Takahashi et al., 2012], we prefer
using our refined Bilateral Filtering with a decreasing thresh-
old detection. We use the double gaussian Kernels of the
Bilateral Filtering as the aggregate function F of the Shasha
Model [Zhu and Shasha, 2003]. The article at highest burst
is selected then removed from the time serie. This process is
repeated until the timeline is filled with the targeted number
of selected events.

Selected articles are displayed with both an image and the
title of the article underneath. The system crops the image to
a flag shape to highlight the temporal nature of events. The
flag shape is attached to the graph with a line from the tri-
angle. When two events happen very close to each other the
flags can float on different sides of their pole (first event is dis-



played on the left to avoid overlapping). When more than two
events occur very close we chose to display them arbitrarily
on different tracks. As we process selected events from high-
est to lowest ranked, most important events are displayed on
the top track and least important ones appear underneath. The
smaller, not selected peaks display vertically the titles of the
selected articles for these days.

The users of the system (i.e. journalists) can zoom on both
axes by using the range sliders at bottom and at left of the
combined graph. A temporal legend always display time ticks
at bottom of the graph. The users can interactively rearrange
events since the layout mechanism can fail to optimize screen
real estate. Users can flip the flags on both side, change track
(up or down) of an event and switch between two sizes (big
or small). Furthermore, users can downgrade an event (and
make it a smaller peak) or upgrade a smaller peak by double
clicking on an vertical title above the graph. This makes the
result fully editable, so that the journalist has the final say on
what is displayed.

3 Discussion
3.1 Limits
The first important limit of the system is that its event gran-
ularity is fixed. This leads to two main issues: 1/ The tool is
not able to detect more than one event per day. 2/ A macro-
event that would last more than one day (e.g. a conference)
could not be extracted nor vizualized.

Workarounds have been considered [Nguyen et al., 2014]
but tend to reduce the overall accuracy of the system. Our
further work will focus on this issue.

The definition of an event “importance” is also open to
question. In this paper we considered to the importance de-
pends only on repetition. Other factors have been studied
and applied with learning-to-rank approaches [Kessler et al.,
2012], and should be integrated into this system.

Finally, the process requires a large number of search en-
gine queries, which makes it time-consuming. A first query
returns a potentially high number of documents; then, one
query per day in the time span is run to select the best article.
Even if they can easily be parallelized, all these queries make
the entire process quite heavy3.

3.2 Adaptation to Other Languages
This study has been achieved on a French dataset. Only two
steps are language-dependent and need little adaption to an-
other language:

• Tokenization and stemming (widely available in many
languages)

• Temporal normalization. Heideltime is available in
13 languages at the time of writing, and other tools may
be existing for other languages.

The next step that is now being conducted consists in an
evaluation with our journalist partners, and considers both the
accuracy of the timeline and the ergonomics.

3Within a single thread on a simple server, about one minute for
a one-year query on a popular subject as “attacks”.

References
[Chieu and Lee, 2004] Hai Leong Chieu and Yoong Keok

Lee. Query based event extraction along a timeline. In
Proceedings of the 27th ACM SIGIR conference, 2004.

[Hochheiser and Shneiderman, 2001] H. Hochheiser and
B. Shneiderman. Visual Specification of Queries for
Finding Patterns in Time-Series Data. Technical Report
CS-TR-4326, University of Maryland, 2001.

[Kessler et al., 2012] Rémy Kessler, Xavier Tannier, Caro-
line Hagège, Véronique Moriceau, and André Bittar. Find-
ing Salient Dates for Building Thematic Timelines. In Pro-
ceedings of the 50th Annual Meeting of the ACL, 2012.

[Kleinberg, 2002] J. Kleinberg. Bursty and Hierarchical
Structure in Streams. In Proceedings of the 8th ACM
SIGKDD Conference, 2002.

[Moriceau and Tannier, 2014] Véronique Moriceau and
Xavier Tannier. French Resources for Extraction and
Normalization of Temporal Expressions with HeidelTime.
In Proceedings of the 9th LREC Conference, 2014.

[Nguyen et al., 2014] Kiem-Hieu Nguyen, Xavier Tannier,
and Véronique Moriceau. Ranking Multidocument Event
Descriptions for Building Thematic Timelines. In Pro-
ceedings of the 30th Coling Conference, 2014.

[Paris and Durand, 2008] Kornprobst P. Tumblin J. Paris, S.
and F. Durand. A Gentle Introduction to Bilateral Filtering
and its Applications. In Proceedings of the 42nd Interna-
tional SIGGRAPH Conference, 2008.

[Strötgen and Gertz, 2013] Jannik Strötgen and Michael
Gertz. Multilingual and Cross-domain Temporal Tagging.
Language Resources and Evaluation, 47(2), 2013.

[Takahashi et al., 2012] Y. Takahashi, T. Utsuro, M. Yosh-
ioka, N. Kando, T. Fukuhara, H. Nakagawa, and Kiyota
Y. Applying a Burst Model to Detect Bursty Topics in a
Topic Model. In Proceedings of JapTAL, 2012.

[Tran et al., 2013] G. Tran, M. Alrifai, and D. Q. Nguyen.
Predicting Relevant News Events for Timeline Summaries.
In Proceedings of WWW Conference, 2013.

[Tran et al., 2015a] G. Tran, E. Herder, and K. Markert. Joint
Graphical Models for Date Selection in Timeline Summa-
rization. In Proceedings of the 53rd ACL, 2015.

[Tran et al., 2015b] Giang Tran, Mohammad Alrifai, and
Eelco Herder. Timeline Summarization from Relevant
Headlines. In Proceedings of the 37th ECIR, 2015.

[Xie et al., 2013] F. Xie, W.and Zhu, J. Jiang, and Lim
E.P.and Wang K. TopicSketch: Real-time Bursty Topic
Detection from Twitter. In Proceedings of IEEE 13th
ICDM, 2013.

[Yan et al., 2011] Rui Yan, Liang Kong, Congrui Huang, Xi-
aojun Wan, Xiaoming Li, and Yan Zhang. Timeline Gen-
eration through Evolutionary Trans-Temporal Summariza-
tion. In Proceedings of the 2011 EMNLP, 2011.

[Zhu and Shasha, 2003] Y. Zhu and D. Shasha. Efficient
elastic burst detection in data streams. In Proceedings of
the Ninth ACM SIGKDD , 2003.


