15th Annual Conference of the North American Chapter of the Association for Computational Linguistics

International Workshop on Semantic Evaluation 2016

### LIMSI-COT at SemEval-2016 Task 12: Temporal relation identification using a pipeline of classifiers

Julien Tourille<sup>1,2</sup>, Olivier Ferret<sup>3</sup>, Aurélie Névéol<sup>1</sup>, Xavier Tannier<sup>1,2</sup>

<sup>1</sup>LIMSI, CNRS, Université Paris-Saclay, F-91405, Orsay <sup>3</sup>CEA, LIST, F-91191, Gif-sur-Yvette <sup>2</sup>Université Paris-Sud







# Outline

- 1. Introduction
- 2. Document Creation Time Relation Subtask
- 3. Container Relation Subtask
- 4. Results
- 5. Conclusion and Perspectives

## Task Description

### **THYME Corpus**

 $\rightarrow$  Clinical notes and Pathological Notes from the Mayo Clinic

→ Manually annotated with events, temporal expressions and narrative container relations

### Six Subtasks

- **1. TS**: identifying the spans of time expressions
- 2. ES: Identifying the spans of event expressions
- 3. TA: identifying the attributes of time expressions
- 4. EA: identifying the attributes of event expressions
- 5. DR: identifying the relation between an event and the document creation time
- 6. CR: identifying narrative container relations

## Task Description

### **THYME Corpus**

 $\rightarrow$  Clinical notes and Pathological Notes from the Mayo Clinic

→ Manually annotated with events, temporal expressions and narrative container relations

### Six Subtasks

- **1. TS**: identifying the spans of time expressions
- 2. ES: Identifying the spans of event expressions
- 3. TA: identifying the attributes of time expressions
- 4. EA: identifying the attributes of event expressions
- 5. DR: identifying the relation between an event and the document creation time
- 6. CR: identifying narrative container relations

# Temporal relation subtasks (1/2)

### **Document Creation Time Relation Subtask (DR)**

 $\rightarrow$  Objective: identify the relation between an event and the document creation time

→ Classes: {before, before-overlap, overlap, after}

| She | feels   | slightly | weak    | but | has | resumed | most | of | her | normal | activities            |   |
|-----|---------|----------|---------|-----|-----|---------|------|----|-----|--------|-----------------------|---|
| -   | EVENT   | -        | EVENT   | -   | -   | EVENT   | -    | -  | -   | -      | EVENT                 | - |
| -   | OVERLAP | -        | OVERLAP | -   | -   | BEFORE  | -    | -  | -   | -      | <b>BEFORE-OVERLAP</b> | - |

# Temporal relation subtasks (2/2)

### **Container Relation Subtask (CR)**

 $\rightarrow$  Objective: identify narrative container relations



Every six months CONTAINS evaluation CONTAINS (blood work AND CEA)

### System Overview



### Preprocessing

| Corpus                  |            |                  |        |                |
|-------------------------|------------|------------------|--------|----------------|
|                         | Metamap    |                  |        | 1              |
| Preprocessing           |            | DCT C            | lassif | ier            |
| BLLIP BioL              | emmatizer  | Document Creatio | n Tin  | ne Subtask     |
|                         |            |                  |        |                |
| Classifier              | Classifier | Classifier       | +      | List Detection |
| Container Relation Subt | ask        |                  |        |                |

- Sentence segmentation: NLTK Punkt sentence Tokenizer (Loper and Bird, 2002)
- 2. Parsing: BLLIP Reranking Parser (Charniak and Johnson, 2005) + Pre-trained biomedical parsing model (McClosky, 2010)
  - → POS and CPOS tags + syntactic dependencies
- 3. Lemmatization: BioLemmatizer (Liu et al., 2012)
- 4. Medical entity recognition: Metamap (Aronson and Lang, 2010)
  - ightarrow Semantic types and semantic groups

### DR Subtask Overview

| Preprocessing | Metamap        | DCT C             | lassifier        |
|---------------|----------------|-------------------|------------------|
| BLLIP         | oLemmatizer    | Document Creation | n Time Subtask   |
| Container     | Intra-Sentence | Inter-Sentence    | + List Detection |

Method: supervised classification problem Classes: {before, before-overlap, overlap, after} Features:

- 1. Entity:
  - surface form, gold-standard attributes, lemma(s), POS and CPOS tags, semantic types and semantic groups
- 2. Sentence context:
  - gold-standard entities: lemma, surface form, POS and CPOS tags, semantic types and semantic groups, count before and after
  - tokens: lemma, POS and CPOS tags
- 3. Section context:
  - gold-standard entities: lemma, surface form, ...
  - relative position of the sentence
  - tokens: count before and after, lemmas, POS and CPOS tags
- 4. Document context:
  - gold standard entities: count before and after, semantic types and semantic groups, type, attributes

# Container Classifier

 BLLP
 BioLemmattzer
 Document Clear On this Subask
 2

 Container
 Intra-Sentence
 Intra-Sentence
 Inter-Sentence

 Classifier
 Intra-Sentence
 Inter-Sentence
 List Detection

 Container Relation Subtask
 Container Relation Subtask
 Inter-Sentence
 Inter-Sentence

Intuition: some entities are more likely to be containers e.g. TIMEX

#### **Container Classifier**

Classify each EVENT/TIMEX according to whether or not they are likely to be a container (contains other EVENT/TIMEX)



Used as feature for the intra-sentence classifier

## **Container Relations**



### **Quantitative analysis:**

Total number of CONTAINS relations: 17,474  $\rightarrow$  13,304 intra-sentence relations ( $\approx$ 76%)  $\rightarrow$  4,170 inter-sentence relations ( $\approx$ 24%)



### **Task decomposition**

- 1. Intra-sentence classifier: allow the use of fine-grained features at the sentence level provided by sentence analysis tools such as syntactic analyzers
- 2. Inter-sentence classifier

**Problem**: inter-sentence level event combination is huge  $\rightarrow$  Inter-sentence dataset is unbalanced

## Inter-sentence relations

| NLTK                    | Metamap                      |                              |                  |
|-------------------------|------------------------------|------------------------------|------------------|
| Preprocessing           |                              |                              | lassifier        |
| BLLIP                   | emmatizer                    | Document Creatio             | n Time Subtask   |
|                         |                              |                              |                  |
| Container<br>Classifier | Intra-Sentence<br>Classifier | Inter-Sentence<br>Classifier | + List Detection |
| Container Relation Subt | ask                          |                              |                  |

### **Container relation by window size**

| Window | Number of relations | Total           |
|--------|---------------------|-----------------|
| 1      | 13,304              | 13,304 (76.30%) |
| 2      | 1,463               | 14,767 (84.69%) |
| 3      | 752                 | 15,519 (89.00%) |
| 4      | 497                 | 16,016 (91.85%) |
| 5      | 364                 | 16,380 (93.94%) |
| 6      | 151                 | 16,531 (94.80%) |

→ Intra-sentence candidate pairs: 222,698

- → Inter-sentence candidate pairs: 622,568
- → Inter-sentence dataset remains strongly unbalanced

System Container Relation Subtask

# **Complexity Reduction**

#### **All permutations**



Classes: contains, no-relation Pairs candidates: 12 Pairs: 1-2, 2-1, 1-3, 3-1, 1-4, 4-1, 2-3, 3-2, 2-4, 4-2, 3-4, 4-3

Containe

Classifie

Container Relation Subtas

#### All combinations from left to right



Classes: contains, no-relation, iscontained Pairs candidates: 6 Pairs: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4

Intra-sentence candidate pairs: from 222,698 to **111,349** Inter-sentence candidate pairs: from 622,568 to **311,284**  List Detection

#### System Container Relation Subtask

### List Detection

| Corpus           NLTK           Preprocessing           BLLIP           BioLemmatizer | DCT Classifier<br>Document Creation Time Subtask |
|---------------------------------------------------------------------------------------|--------------------------------------------------|
| Container<br>Classifier<br>Container Relation Subtask                                 | Inter-Sentence<br>Classifier + List Detection    |

| CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS<br>CONTAINS                                                 |
| CONTAINS<br>CONTAINS<br>CONTAINS                                                                                                             |
|                                                                                                                                              |
| Position/Cuff=left arm sitting,                                                                                                              |
| Pulse Rate=60 /min,                                                                                                                          |
|                                                                                                                                              |

**Objective:** increase recall at inter-sentence level

Method: regular expressions to detect structured parts of texts related to laboratory results

## CR Subtask overview

| Corp             |                                   |                                |                  |
|------------------|-----------------------------------|--------------------------------|------------------|
| NLTK             | Metamap                           |                                |                  |
| Preproce         | essing                            | DCT Cla                        | ssifier          |
| BLLIP            | BioLemmatizer                     | Document Creation              | Time Subtask     |
| ł                |                                   |                                |                  |
| Contai<br>Classi | fier Intra-Sentence<br>Classifier | e Inter-Sentence<br>Classifier | + List Detection |
| Container Rela   | ation Subtask                     |                                |                  |

#### **Three Classifiers**

- 1. Container
- 2. Intra-sentence relations
- 3. Inter-sentence relations

#### + One list detection module based on regular expressions

#### **Features:**

- 1. Entity:
  - surface form, gold-standard attributes, lemma(s), POS and CPOS tags, semantic types and semantic groups, token count between the two entities, entity count between the two entities, syntactic paths between the two entities, model predictions
- 2. Sentence context:
  - gold-standard entities: lemma, surface form, POS and CPOS tags, semantic types and semantic groups, count before and after
  - tokens: lemma, POS and CPOS tags
- 3. Section context:
  - relative position of the sentence

### Parameters

### **Strategies**

- **Run 1**: plain lexical features
- Run 2: word embeddings computed on the MIMIC II corpus (Saeed et al., 2011)

### **Machine learning algorithms**

| Run           | Classifier | Algorithm      | % of feature space |
|---------------|------------|----------------|--------------------|
|               | CONTAINER  | SVM (RBF)      | 60                 |
| Plain lexical | INTRA      | SVM (RBF)      | 60                 |
| features      | INTER      | SVM (RBF)      | 100                |
|               | DCT        | SVM (Linear)   | 100                |
|               | CONTAINER  | SVM (Linear)   | 100                |
| Word          | INTRA      | SVM (Linear)   | 100                |
| embeddings    | INTER      | SVM (Linear)   | 100                |
|               | DCT        | Random Forests | 100                |

Experimentation

## DR Subtask - Performance

|                       | Р | R            | F1 |
|-----------------------|---|--------------|----|
| Plain lexical feature | - | 0.769        | -  |
| Word embeddings       | - | <u>0.807</u> | -  |
| Max                   | - | 0.843        | -  |
| Median                | - | 0.724        | -  |
| Baseline              | - | 0.675        | -  |

## Plain Lexical Features - Performance

|                    | Pred | Corr | Р     | R     | F1    |   |
|--------------------|------|------|-------|-------|-------|---|
| Intra Classifier   | 3229 | 2468 | 0.764 | 0.409 | 0.533 |   |
| + Inter Classifier | 3651 | 2619 | 0.717 | 0.432 | 0.539 | ↗ |
| + List Detection   | 3755 | 2642 | 0.704 | 0.436 | 0.538 | Ы |
| Max                | -    | -    | 0.823 | 0.564 | 0.573 |   |
| Median             | -    | -    | 0.589 | 0.345 | 0.449 |   |
| Baseline           | -    | -    | 0.459 | 0.154 | 0.231 |   |

Container classifier accuracy on dev corpus = 0.917

# Word Embeddings - Performance

|                    | Pred | Corr | Р     | R     | F1    |   |
|--------------------|------|------|-------|-------|-------|---|
| Intra Classifier   | 2296 | 1845 | 0.804 | 0.310 | 0.447 |   |
| + Inter Classifier | 2440 | 1888 | 0.774 | 0.317 | 0.449 | ↗ |
| + List Detection   | 2544 | 1911 | 0.751 | 0.320 | 0.449 | = |
| Max                | -    | -    | 0.823 | 0.564 | 0.573 |   |
| Median             | -    | -    | 0.589 | 0.345 | 0.449 |   |
| Baseline           | -    | -    | 0.459 | 0.154 | 0.231 |   |

Container classifier accuracy on dev corpus = 0.924

# **Conclusion & Perspectives**

- Efficient model based on simple modules
  - Document Creation Time Relation subtask: multiclass classifier
  - Container Relation subtask: pipeline of classifiers
- Complexity can be handled by problem transformation and recall/complexity trade-off
  - 2-class problem → 3-class problem
  - Limited window size for inter-sentence relations
- Word embedding does not improved systematically performance
  - $\rightarrow$  Further investigation is needed
- The model does fit on other languages: similar results on French

15th Annual Conference of the North American Chapter of the Association for Computational Linguistics

International Workshop on Semantic Evaluation 2016

## Thank you !

#### LIMSI-COT at SemEval-2016 Task 12: Temporal relation identification using a pipeline of classifiers

Julien Tourille<sup>1,2</sup>, Olivier Ferret<sup>3</sup>, Aurélie Névéol<sup>1</sup>, Xavier Tannier<sup>1,2</sup>

<sup>1</sup>LIMSI, CNRS, Université Paris-Saclay, F-91191, Orsay <sup>3</sup>CEA, LIST, F-91191, Gif-sur-Yvette <sup>2</sup>Université Paris-Sud

